Curso Superior de Inteligencia Artificial Aplicada a los Negocios
convocatoria
Convocatoria Abierta
modalidad
Online
duracion
300 H
precio
460 EUR 345 EUR
convocatoria
Convocatoria
Abierta
Las acciones formativas de INESEM tienen modalidad online
Modalidad
Online
Duración de las acciones formativas de INESEM
Duración
300 H
BECA 25 %
Precio: 460 EUR AHORA: 345 EUR
Hasta el 20/06/2024
¡Puedes fraccionar tus pagos cómodamente!

Cuota

345 €
Resto de plazos: 345 €/mes

Presentación

¿Te apasionan las nuevas tecnologías y quieres que formen parte de tu futuro profesional? La Inteligencia Artificial ha incrementado su importancia en los últimos años en todos los campos, incluyendo el de los negocios. Por esto, las empresas cada vez demandan más profesionales con conocimientos para desarrollar e implantar sistemas inteligentes empleando Machine Learning, Deep Learning y Business Intelligence. El Curso de Inteligencia Artificial en los Negocios te proporcionará todas las nociones imprescindibles para cambiar el mundo. ¡Especialízate!

Con reconocimiento de:

QS Stars Rating System
plan de estudios

Para qué te prepara

El Curso de Inteligencia Artificial en los Negocios te proporcionará conocimientos clave para realizar una correcta aplicación de la Inteligencia Artificial, Machine Learning y Deep Learning en el ámbito de los negocios. Además, serás capaz de llevar a cabo el procesamiento de lenguaje natural y desarrollar un chatbots, aprovechando los beneficios que reporten. Combina algoritmos y crea máquinas inteligentes con las que podrás mejorar la productividad de cualquier empresa.


Objetivos
  • Entender la creciente relevancia de la inteligencia artificial de cara a nuevas tecnologías.
  • Dominar diversas herramientas de Business Intelligence como, por ejemplo, PowerBi, Tableau o Qlikview.
  • Desarrollar un chatbot a través del uso de
  • Diseñar un sistema de Deep Learning.
  • Ser capaz de realizar el procesamiento del lenguaje natural.
  • Manejar diferentes herramientas avanzadas de Machine Learning con aplicación en inteligencia artificial.

A quién va dirigido

Dirigido a profesionales del ámbito empresarial que busquen incrementar su valía profesional a través del domino del comportamiento inteligente de cualquier sistema. Además, el Curso de Inteligencia Artificial en los Negocios es ideal para cualquier persona que sienta un gran interés por las nuevas tecnologías y desee formarse en este campo.


Salidas Profesionales
Mediante la realización de este Curso de Inteligencia Artificial aplicada a los negocios podrás trabajar como Director de proyectos en inteligencia artificial, Business Analyst y Programador de Inteligencia Artificial en proyectos de Deep learning o Programador de chatbots inteligentes a medida.

temario

  1. Introducción a la inteligencia artificial
  2. Historia
  3. La importancia de la IA
  1. Algoritmos aplicados a la inteligencia artificial
  1. Relación entre inteligencia artificial y big data
  2. IA y Big Data combinados
  3. El papel del Big Data en IA
  4. Tecnologías de IA que se están utilizando con Big Data
  1. Sistemas expertos
  2. Estructura de un sistema experto
  3. Inferencia: Tipos
  4. Fases de construcción de un sistema
  5. Rendimiento y mejoras
  6. Dominios de aplicación
  7. Creación de un sistema experto en C#
  8. Añadir incertidumbre y probabilidades
  1. Futuro de la inteligencia artificial
  2. Impacto de la IA en la industria
  3. El impacto económico y social global de la IA y su futuro
  1. Introducción
  2. Clasificación de algoritmos de aprendizaje automático
  3. Ejemplos de aprendizaje automático
  4. Diferencias entre el aprendizaje automático y el aprendizaje profundo
  5. Tipos de algoritmos de aprendizaje automático
  6. El futuro del aprendizaje automático
  1. Introducción
  2. Filtrado colaborativo
  3. Clusterización
  4. Sistemas de recomendación híbridos
  1. Clasificadores
  2. Algoritmos
  1. Introducción
  2. El proceso de paso de DSS a IDSS
  3. Casos de aplicación
  1. Aprendizaje profundo
  2. Entorno de Deep Learning con Python
  3. Aprendizaje automático y profundo
  1. Redes neuronales
  2. Redes profundas y redes poco profundas
  1. Perceptrón de una capa y multicapa
  2. Ejemplo de perceptrón
  1. Tipos de redes profundas
  2. Trabajar con TensorFlow y Python
  1. Entrada y salida de datos
  2. Entrenar una red neuronal
  3. Gráficos computacionales
  4. Implementación de una red profunda
  5. El algoritmo de propagación directa
  6. Redes neuronales profundas multicapa
  1. Introducción a la minería de datos y el aprendizaje automático
  2. Proceso KDD
  3. Modelos y Técnicas de Data Mining
  4. Áreas de aplicación
  5. Minería de textos y Web Mining
  6. Data mining y marketing
  1. Aproximación al concepto de DataMart
  2. Bases de datos OLTP
  3. Bases de Datos OLAP
  4. MOLAP, ROLAP & HOLAP
  5. Herramientas para el desarrollo de cubos OLAP
  1. Visión General. ¿Por qué DataWarehouse?
  2. Estructura y Construcción
  3. 3. Fases de implantación
  4. Características
  5. Data Warehouse en la nube
  1. Tipos de herramientas para BI
  2. Productos comerciales para BI
  3. Productos Open Source para BI
  1. Business Intelligence en Excel
  2. Herramienta Powerbi
  1. Instalación y arquitectura
  2. Carga de datos
  3. Informes
  4. Transformación y modelo de datos
  5. Análisis de datos
  1. ¿Qué es PLN?
  2. ¿Qué incluye el PLN?
  3. Ejemplos de uso de PLN
  4. Futuro del PLN
  1. Introducción a Python
  2. ¿Qué necesitas?
  3. Librerías para el análisis de datos en Python
  4. PLN en Python con la librería NLTK
  5. Otras herramientas para PLN
  1. Principios del análisis sintáctico
  2. Gramática libre de contexto
  3. Analizadores sintácticos (Parsers)
  1. Aspectos introductorios del análisis semántico
  2. Lenguaje semántico para PLN
  3. Análisis pragmático
  1. Aspectos introductorios
  2. Pasos en la extracción de información
  3. Ejemplo PLN
  4. Ejemplo PLN con entrada de texto en inglés
  1. Introducción a la Inteligencia artificial
  2. El Test de Turing
  3. Agentes Inteligentes
  4. Aplicaciones de la inteligencia artificial
  1. Aspectos introductorios
  2. ¿Qué es un chatbot?
  3. ¿Cómo funciona un chatbot?
  4. VoiceBots
  5. Desafios para los Chatbots
  1. Chatbots y el papel de la Inteligencia Artificial (IA)
  2. Usos y beneficios de los chatbots
  3. Diferencia entre bots, chatbots e IA
  1. Áreas de aplicación de Chatbots
  2. Desarrollo de un chatbot con ChatterBot y Python
  3. Desarrollo de un chatbot para Facebook Messenger con Chatfuel

metodología

claustro

Claustro de Profesores Especializado

Realizará un seguimiento personalizado del aprendizaje del alumno.

campus virtual

Campus virtual

Acceso ilimitado desde cualquier dispositivo 24 horas al día los 7 días de la semana al Entorno Personal de Aprendizaje.

materiales didácticos

Materiales didácticos

Apoyo al alumno durante su formación.

material adicional

Material Adicional

Proporcionado por los profesores para profundizar en cuestiones indicadas por el alumno.

Centro de atención al estudiante (CAE)

Centro de atención al estudiante (CAE)

Asesoramiento al alumno antes, durante, y después de su formación con un teléfono directo con el claustro docente 958 050 242.

inesem emplea

INESEM emplea

Programa destinado a mejorar la empleabilidad de nuestros alumnos mediante orientación profesional de carrera y gestión de empleo y prácticas profesionales.

comunidad

Comunidad

Formada por todos los alumnos de INESEM Business School para debatir y compartir conocimiento.

revista digital

Revista Digital INESEM

Punto de encuentro de profesionales y alumnos con el que podrás comenzar tu aprendizaje colaborativo.

masterclass

Master Class INESEM

Aprende con los mejores profesionales enseñando en abierto. Únete, aprende y disfruta.

Clases online

Clases online

Podrás continuar tu formación y seguir desarrollando tu perfil profesional con horarios flexibles y desde la comodidad de tu casa.

Con nuestra metodología de aprendizaje online, el alumno comienza su andadura en INESEM Business School a través de un campus virtual diseñado exclusivamente para desarrollar el itinerario formativo con el objetivo de mejorar su perfil profesional. El alumno debe avanzar de manera autónoma a lo largo de las diferentes unidades didácticas así como realizar las actividades y autoevaluaciones correspondientes.La carga de horas de la acción formativa comprende las diferentes actividades que el alumno realiza a lo largo de su itinerario. Las horas de teleformación realizadas en el Campus Virtual se complementan con el trabajo autónomo del alumno, la comunicación con el docente, las actividades y lecturas complementarias y la labor de investigación y creación asociada a los proyectos. Para obtener la titulación el alumno debe aprobar todas la autoevaluaciones y exámenes y visualizar al menos el 75% de los contenidos de la plataforma. Por último, es necesario notificar la finalización de la acción formativa desde la plataforma para comenzar la expedición del título.

becas

Becas y financiación

Hemos diseñado un Plan de Becas para facilitar aún más el acceso a nuestra formación junto con una flexibilidad económica. Alcanzar tus objetivos profesionales e impulsar tu carrera profesional será más fácil gracias a los planes de Inesem.

Si aún tienes dudas solicita ahora información para beneficiarte de nuestras becas y financiación.

Financiación 100% sin intereses

Información sobre becas Becas aplicables sólamente tras la recepción de la documentación necesaria en el Departamento de Asesoramiento Académico. Más información en el 958 050 205 o vía email en formacion@inesem.es

Información sobre becas * Becas no acumulables entre sí.

Información sobre becas * Becas aplicables a acciones formativas publicadas en inesem.es

Información sobre becas * Becas no aplicables a formación programada.

titulación

Titulación Expedida y Avalada por el Instituto Europeo de Estudios Empresariales “Enseñanza no oficial y no conducente a la obtención de un título con carácter oficial o certificado de profesionalidad.”
Titulación:
Titulacion de INESEM

claustro

Claustro de profesores:
Isaías
Isaías Aranda Cano

Grado Superior en Administración de Sistemas Informáticos. Especialista en ciberseguridad y en el diseño, implementación y gestión de servicios en

Leer más
Daniel
Daniel Cabrera

Licenciado en Ciencias Físicas y con Máster en Implantación, Gestión y Auditoría de Sistemas de Seguridad de Información ISO 27001-27002. /> Administrador de sistemas durante más de 15 años, gestor de plataformas de alta capacidad, escalabilidad y rendimiento. Siempre a la última en todo lo relacionado con tecnologías Cloud, DevOps, SER, etc.
 

Leer más
Rafael
Rafael Marín

Ingeniero técnico en Informática de Sistemas por la Universidad de Granada (UGR), con un Curso Superior en Ciberseguridad, Business Intelligence y

Leer más
Bibiana
Bibiana Moreno Leyva

CEO de EducaLMS, proyecto de innovación educativa. Técnica superior en Desarrollo de Aplicaciones Informáticas. Cuenta con más de seis años de

Leer más
Daniel
Daniel Rodriguez

Licenciado en Ingeniería Técnica en Informática de Sistemas. Cuenta con más de 10 años de experiencia en el desarrollo y soporte de la aplicación

Leer más
Juan Antonio
Juan Antonio Cortés Ibáñez

Graduado en Ingeniería Informática por la UGR con Máster Universitario Oficial en Ciencia de Datos e Ingeniería de Computadores por la UGR.

Leer más

Opiniones de los alumnos

Me animé a hacer este curso por el temario y las salidas profesionales que ofrecía. He adquirido muchos nociones sobre Chatboots y PNL desde el punto de vista de un negocio. Los docentes han sido muy atentos y rápidos para resolver cualquier duda. Sin duda, lo recomiendo.

Rafael H. M.
Dónde realizan las prácticas nuestros alumnos:
TAMBIÉN PODRÍA INTERESARTE...
Otras Acciones Formativas relacionadas

5 RAZONES

PARA ELEGIR INESEM

Hay muchas más motivos ¿Quieres conocerlos?

Por qué matricularme en INESEM
logo
ARTÍCULOS RELACIONADOS
Cargando artículos
INESEM EMPLEA

Completa tu formación con nuestro Servicio de Orientación Profesional y nuestro Programa de Entrenamiento por Competencias.

inesem emplea inesem emplea inesem emplea
Universidades colaboradoras
La universidad Antonio de Nebrija es Universidad colaboradora con INESEM Business School La universidad a Distancia de Madrid es Universidad colaboradora con INESEM Business School

Este sitio web utiliza cookies propias y de terceros para mejorar los servicios relacionados con tus preferencias, mediante el análisis de tus hábitos de navegación. En caso de que rechace las cookies, no podremos asegurarle el correcto funcionamiento de las distintas funcionalidades de nuestra página web. Puede obtener más información y cambiar su configuración en nuestra política de cookies.

Tardarás 3 minutos

El responsable del tratamiento es INST. EUROPEO DE ESTUDIOS EMPRESARIALES, S.A.U