Master en Robótica y Automatización Industrial + 8 Créditos ECTS
practicas
Prácticas Garantizadas
convocatoria
Convocatoria Abierta
modalidad
ONLINE
duracion
1500 H
creditos ects
Créditos
8 ECTS
precio
1595 EUR
practicas
Prácticas
Garantizadas
convocatoria
Convocatoria
Abierta
Las acciones formativas de INESEM tienen modalidad online
Modalidad
ONLINE
Duración de las acciones formativas de INESEM
Duración
1500 H
Créditos de las acciones formativas de INESEM
Créditos
8 ECTS
Precio de las acciones formativas de INESEM
Precio
1595EUR

Presentación

Según el informe Deloitte, el 53% de las empresas ya están implantando procesos de automatización industrial, y el 19% lo hará en los próximos dos años, por lo que se prevé una adopción plena para los próximos cinco años. Este hecho, ha provocado una intensificación de la demanda de profesionales con conocimientos en este ámbito. ¿Quieres trabajar en el sector con más demanda actual? Matricúlate en el Master en Robótica Online y Automatización Industrial.

plan de estudios

Para qué te prepara

El Mater en Robótica Online y Automatización Industrial, proporciona al alumnado los conocimientos necesarios para llevar a cabo actuaciones en industrias por medio de la programación de robots industriales. De  igual manera, conseguirá implantar  sensores y actuadores controlados por autómatas programables para el control de procesos industriales adaptándolos a GEMMA, al tiempo en que estudiará los sistemas HMI y SCADA en procesos industriales.


Objetivos
  • Con el Master en Robótica Online y Automatización  Industrial, podrás conocer la evolución y conceptos de la robótica.
  • Integrar la robótica con otros sistemas automatizados.
  • Conocer los tipos  de servocontrol y funciones.
  • Adquirir los métodos de programación.
  • Gestionar la estructura interna de los autómatas y su modo de funcionamiento.
  • Dominar las metodologías y herramientas que un autómata puede procesar.

A quién va dirigido

Aquellos profesionales dedicados área de la gestión integrada, que poseen títulos equivalentes a Ingeniería  Robótica, Ingeniería Mecánica, Ingeniería Electrónica, Ingeniería de Tecnología de Telecomunicación, entre otros, son los principales beneficiarios del Master en Robótica Online y Automatización Industrial.


Salidas Profesionales

Tras la finalización del Master en Robótica Online y Automatización Industrial, los estudiantes podrán realizar las funciones de un Técnico en Robótica y Automatización Industrial. De igual modo, podrán ocupar puestos como Jefe de equipo de Supervisión de Montaje, Proyectista de Sistemas de Control, Medias o Regulación, Programador de Robots Industriales, Diseñador de Circuitos, etc.

temario

  1. Introducción a la robótica
  2. Contexto de la robótica industrial
  3. Mercado actual de los brazos manipuladores
  4. Qué se entiende por Robot Industrial
  5. Elementos de un sistema robótico
  6. Subsistemas de un robot
  7. Tareas desempeñadas con robótica
  8. Clasificación de los robots
  1. El papel de la Robótica en la automatización
  2. Interacción de los robots con otras máquinas
  3. La célula robotizada
  4. Estudio técnico y económico del robot
  5. Normativa
  6. Accidentes y medidas de seguridad
  1. Componentes del brazo robot
  2. Características y capacidades del robot
  3. Definición de grados de libertad
  4. Definición de capacidad de carga
  5. Definición de velocidad de movimiento
  6. Resolución espacial, exactitud, repetibilidad y flexibilidad
  7. Definición de volumen de trabajo
  8. Consideraciones sobre los sistemas de control
  9. Morfología de los robots
  10. Tipo de coordenadas cartesianas Voladizo y pórtico
  11. Tipología cilíndrica
  12. Tipo esférico
  13. Brazos robots universal
  1. Tipología de actuadores y transmisiones
  2. Funcionamiento y curvas características
  3. Funcionamiento de los Servomotores
  4. Motores paso a paso
  5. Actuadores Hidráulicos
  6. Actuadores Neumáticos
  7. Estudio comparativo
  8. Tipología de transmisiones
  1. Dispositivos sensoriales
  2. Características técnicas
  3. Puesta en marcha de sensores
  4. Sensores de posición no ópticos
  5. Sensores de posición ópticos
  6. Sensores de velocidad
  7. Sensores de proximidad
  8. Sensores de fuerza
  9. Visión artificial
  1. El controlador
  2. Hardware
  3. Métodos de control
  4. El procesador en un controlador robótico
  5. Ejecución a tiempo real
  1. Elementos y actuadores terminales de robots
  2. Conexión entre la muñeca y la herramienta final
  3. Utilización de robots para traslado de materiales y carga/descarga automatizada Pick and place
  4. Aplicaciones de traslado de materiales Pick and place
  5. Cogida y sujeción de piezas por vacío Ventosas
  6. Imanes permanentes y electroimanes
  7. Pinzas mecánicas para agarre
  8. Sistemas adhesivos
  9. Sistemas fluídicos
  10. Agarre con enganche
  1. Pintado robotizado
  2. El sistema de pintado Mezclador y equipamiento
  3. Soldadura robotizada
  4. Soldadura TIG y MIG
  5. Soldadura por puntos
  6. Soldadura laser
  7. El proceso de ensamblaje
  8. Métodos de ensamblaje
  9. Emparejamiento y unión de piezas
  10. Acomodamiento de piezas
  1. Conceptos iniciales de programación de Robots
  2. Programación por guiado Pasivo y Activo
  3. El lenguaje textual ideal para programar robots
  4. Tipologías existentes de lenguajes textuales
  5. Características generales
  6. Programación orientada al robot, objeto y a la tarea
  7. Programación a nivel de robot
  8. Programación a nivel de objeto
  9. Programación textual a nivel de tarea
  10. El lenguaje V+ o V3
  11. El lenguaje de programación RAPID
  12. El lenguaje IRL
  13. El lenguaje OROCOS
  14. Programación CAD
  1. Recursos de aprendizaje para lenguaje RAPID de ABB
  2. Recursos de aprendizaje para lenguaje KRL de KUKA
  3. Recursos de aprendizaje para lenguaje KAREL de FANUC
  4. Recursos de aprendizaje para lenguaje VALII de UNIMATION
  5. Recursos de aprendizaje para lenguaje V+ de STÄUBLI
  1. Concepto e historia
  2. Bases de la robótica actual
  3. Plataformas móviles
  4. Crecimiento esperado en la industria robótica
  5. Límites de la robótica actual
  1. Robótica
  2. Inteligencia artificial
  3. Objetivos de la inteligencia artificial
  4. Historia de la inteligencia artificial
  5. Lenguaje de programación: el idioma de los robots
  6. Investigación y desarrollo en áreas de la inteligencia artificial
  7. Robótica y la inteligencia artificial
  1. Introducción
  2. Robótica y beneficios
  3. Robótica industrial
  4. Futuro de la robótica
  5. Robótica y las nuevas tecnologías
  6. Tendencias
  1. Evolución de la robótica
  2. Futuro de la robótica
  3. Robótica en la ingeniería e industria
  1. Inteligencia natural y artificial
  2. Inteligencia artificial y cibernética
  3. Autonomía en robótica
  4. Sistemas expertos
  5. Agentes virtuales con animación facial por ordenador
  6. Actualidad
  1. La robótica aplicada al ser humano: biónica
  2. Reseña histórica de las prótesis
  3. Diseño de prótesis en el siglo XX
  4. Investigaciones y desarrollo recientes en diseño de manos
  5. Sistemas protésicos
  6. Uso de materiales inteligentes en las prótesis
  1. Introducción
  2. Situación actual y tendencias para el futuro
  3. Objetivos
  4. Metodología y estructura
  1. Conceptos previos
  2. Objetivos de la automatización
  3. Grados de automatización
  4. Clases de automatización
  5. Equipos para la automatización industrial
  6. Diálogo Hombre-máquina, HMI y SCADA
  1. Definición y operaciones que realizan los autómatas programables PLC
  2. Historia y evolución de los autómatas programables
  3. Ventajas y desventajas del PLC frente a la lógica cableada
  4. Clasificación de los autómatas
  5. MicroPLC´s
  6. Ubicación del autómata programable dentro del cuadro
  1. Funcionamiento y bloques esenciales de los autómatas programables
  2. Dispositivos de programación de autómatas programables
  3. Ciclo de funcionamiento de autómatas programables
  4. Fuente de alimentación: comunes, específicas y tampón
  5. Arquitectura de la unidad central de proceso (CPU) de un PLC
  6. Memoria del autómata: tipología y almacenamiento de variables
  1. Interfac de entrada y salida
  2. Señales de entrada digitales (todo-nada)
  3. Señales de entrada analógicas
  4. Salidas a relé
  5. Salidas a transistores
  6. Salidas a Triac
  7. Salidas analógicas
  8. Diagnóstico y comprobación de entradas y salidas mediante instrumentación
  9. Entradas analógicas en PLC: normalización y escalado
  1. Secuencias de operaciones del autómata programable: watchdog
  2. Modos de operación del autómata programable
  3. Etapas del ciclo de funcionamiento del PLC
  4. Chequeos del sistema y rutinas iniciales y cíclicas
  5. Tiempo de ejecución y control en tiempo real
  6. Elementos de proceso rápido
  1. Importancia de la configuración del autómata programable
  2. Tipos de procesadores en la Unidad Central de Proceso
  3. Configuración de la Unidad de Control: procesadores centrales y periféricos
  4. Unidades de control redundantes
  5. Configuraciones del sistema de entradas / salidas: centralizadas y distribuidas
  6. Comunicaciones industriales y módulos de comunicaciones
  7. Memoria masa
  8. Periféricos
  1. Conceptos generales de programación
  2. Estructuras del programa de aplicación y ciclo de ejecución: programación estructurada
  3. Representación de los lenguajes de programación y la norma IEC 1131
  4. Álgebra de Boole: postulados y teoremas
  5. Uso y funcionamiento de temporizadores. Ejemplos de aplicación
  6. Funcionamiento de contadores. Ejemplos de aplicación
  7. Funcionamiento de comparadores Ejemplos de aplicación
  8. Función SET-RESET (RS). Ejemplos de aplicación
  9. Funcionamiento del Teleruptor. Ejemplos de aplicación
  10. Elemento de flanco positivo y negativo Ejemplos de aplicación
  11. Operadores aritméticos Ejemplos de aplicación
  1. Lenguaje en esquemas de contacto
  2. Reglas del lenguaje LD
  3. Elementos de entrada y salida del lenguaje
  4. Elementos de ruptura de la secuencia de ejecución
  5. Caso práctico resuelto con LD: accionamiento de 2 Motores-bomba
  6. Caso práctico resuelto con LD: estampadora semiautomática
  1. Funciones y puertas lógicas
  2. Reglas de funcionamiento del lenguaje en lista de instrucciones
  3. Ejemplos de aplicación con FBD
  4. Caso práctico resuelto con FBD: taladro semiautomático
  5. Caso práctico resuelto con FBD: taladro semiautomático
  1. Lenguaje en lista de instrucciones
  2. Estructura de una instrucción de mando Ejemplos
  3. Ejemplos de instrucciones de mando para diferentes marcas de PLC
  4. Instrucciones en lista de instrucciones
  5. Lenguaje de programación por texto estructurado
  1. Presentación de la herramienta o lenguaje GRAFCET
  2. Principios Básicos de GRAFCET
  3. Etapas
  4. Acciones asociadas a etapas
  5. Condición de transición
  6. Reglas de Evolución del GRAFCET
  7. Implementación del GRAFCET
  8. Pulso inicial
  9. Elección condicional entre varias secuencias con GRAFCET
  10. Bifurcación en O Subprocesos alternativos
  11. Secuencias simultáneas
  12. Salto Condicional a otra Etapa
  13. Utilización de macroetapas en GRAFCET
  14. Elaboración del programa de usuario
  15. Caso práctico resuelto con GRAFCET: activación de semáforo con pulsador
  16. Caso práctico resuelto con GRAFCET: control de puente grúa
  1. Práctica Secuencia de LED
  2. Práctica Alarma sonora
  3. Práctica Control de ascensor con dos pisos
  4. Práctica Control de depósito
  5. Práctica Control de un semáforo
  6. Práctica Cintas transportadoras
  7. Práctica Control de un Parking
  8. Práctica Automatización de puerta Corredera
  9. Práctica : Automatización de proceso de elaboración de curtidos
  1. La necesidad de las redes de comunicación industrial
  2. Sistemas de control centralizado, distribuido e híbrido
  3. Sistemas avanzados de organización industrial: ERP y MES
  4. La pirámide CIM y la comunicación industrial
  5. Las redes de control frente a las redes de datos
  6. Buses de campo, redes LAN industriales y LAN/WAN
  7. Arquitectura de la red de control: topología anillo, estrella y bus
  8. Aplicación del modelo OSI a redes y buses industriales
  9. Fundamentos de transmisión, control de acceso y direccionamiento en redes industriales
  10. Procedimientos de seguridad en la red de comunicaciones
  11. Introducción a los estándares RS, RS, IEC, ISOCAN, IEC, Ethernet, USB
  1. Buses de campo: aplicación y fundamentos
  2. Evaluación de los buses industriales
  3. Diferencias entre cableado convencional y cableado con Bus
  4. Selección de un bus de campo
  5. Funcionamiento y arquitectura de nodos y repetidores
  6. Conectores normalizados
  7. Normalización
  8. Comunicaciones industriales aplicadas a instalaciones en Domótica e Inmótica
  9. Buses propietarios y buses abiertos
  10. Tendencias
  11. Gestión de redes
  1. Clasificación de los buses
  2. AS-i (Actuator/Sensor Interface)
  3. DeviceNet
  4. CANopen (Control Area Network Open)
  5. SDS (Smart Distributed System)
  6. InterBus
  7. WorldFIP (World Factory Instrumentation Protocol)
  8. HART (Highway Addressable Remote Transducer)
  9. P-Net
  10. BITBUS
  11. ARCNet
  12. CONTROLNET
  13. PROFIBUS (PROcess FIeld BUS)
  14. FIELDBUS FOUNDATION
  15. MODBUS
  16. ETHERNET INDUSTRIAL
  1. Historia del bus AS-Interface
  2. Características del bus AS-i
  3. Componentes del bus AS-i pasarelas…
  4. Montaje y composición
  5. Configuración de la red AS-Interface
  6. Aplicación del modelo ISO/OSI albus AS-i
  7. Conectividad y pasarelas
  8. El esclavo y la comunicación con los sensores y actuadores (Interfaz )
  9. Sistemas de transmisión (Interfaz )
  10. El maestro AS-i (Interfaz )
  11. El protocolo AS-Interface: características, codificación, acceso al medio, errores y configuración
  12. Fases operativas del funcionamiento del bus
  1. PROFIBUS (Process Field BUS)
  2. Introducción a Profibus
  3. Utilización de los perfiles de PROFIBUS para DP, PA y FMS
  4. Modelo ISO OSI para Profibus
  5. Cable para RS-, fibra óptica y IEC -
  6. Coordinación de datos en Profibus
  7. Profibus DP Funciones Básicas y Configuración
  8. Profibus FMS
  9. Comunicación y aplicaciones del Profibus-PA
  10. Resolución de errores con Profisafe
  11. Aplicaciones para dispositivos especiales
  12. Archivos GSD y número de identificación para la conexión de dispositivos
  1. Fundamentos del protocolo CAN
  2. Formato de trama en el protocolo CAN
  3. Estudio del acceso al medio en el protocolo CAN
  4. Sincronización
  5. Topología
  6. Tipología de conectores en CAN
  7. Aplicaciones: CANopen, DeviceNet, TTCAN…
  8. Introducción al BUS CANopen
  9. Arquitectura simplificada de CANOpen
  10. Uso del diccionario de objetos en CANopen
  11. Perfiles
  12. Gestión de la res
  13. Estructura de CANopen: definición de SDOs y PDOs
  1. Ethernet y el ámbito industrial
  2. Las ventajas de Ethernet industrial respecto al resto
  3. Soluciones para compatibilizar Ethernet en la industria
  4. Evoluciones del protocolo: RETHER y ETHEREAL
  5. Mecanismos de prioridad en Ethernet: IEEE P y configuración del switch
  6. Componentes y esquemas
  7. Uso de Ethernet industrial en los Buses de campo
  8. PROFINET
  9. EtherNet/IP
  10. ETHERCAT
  1. Contexto de la tecnología inalámbrica en aplicaciones industriales
  2. Sistemas Wireless
  3. Componentes
  4. Wireless en la industria
  5. Tecnologías de transmisión
  6. Tipologías de wireless
  7. Parámetros de las redes inalámbricas
  8. Antenas
  9. Wireless Ethernet
  10. Estándar IEEE
  11. Elementos de seguridad en una red Wi-Fi
  1. Contexto evolutivo de los sistemas de visualización
  2. Sistemas avanzados de organización industrial: ERP y MES
  3. Consideraciones previas de supervisión y control
  4. El concepto de “tiempo real” en un SCADA
  5. Conceptos relacionados con SCADA
  6. Definición y características del sistemas de control distribuido
  7. Sistemas SCADA frente a DCS
  8. Viabilidad técnico económica de un sistema SCADA
  9. Mercado actual de desarrolladores SCADA
  10. PC industriales y tarjetas de expansión
  11. Pantallas de operador HMI
  12. Características de una pantalla HMI
  13. Software para programación de pantallas HMI
  14. Dispositivos tablet PC
  1. Principio de funcionamiento general de un sistema SCADA
  2. Subsistemas que componen un sistema de supervisión y mando
  3. Componentes de una RTU, funcionamiento y características
  4. Sistemas de telemetría: genéricos, dedicados y multiplexores
  5. Software de control de una RTU y comunicaciones
  6. Tipos de capacidades de una RTU
  7. Interrogación, informes por excepción y transmisiones iniciadas por RTU's
  8. Detección de fallos de comunicaciones
  9. Fases de implantación de un SCADA en una instalación
  1. Fundamentos de programación orientada a objetos
  2. Driver, utilidades de desarrollo y Run-time
  3. Las utilidades de desarrollo y el programa Run-time
  4. Utilización de bases de datos para almacenamiento
  5. Métodos de comunicación entre aplicaciones: OPC, ODBC, ASCII, SQL y API
  6. La evolución del protocolo OPC a OPC UA (Unified Architecture)
  7. Configuración de controles OPC en el SCADA
  1. Símbolos y diagramas
  2. Identificación de instrumentos y funciones
  3. Símbología empleada en el control de procesos
  4. Diseño de planos de implantación y distribución
  5. Tipología de símbolos
  6. Ejemplos de esquemas
  1. Fundamentos iniciales del diseño de un sistema automatizado
  2. Presentación de algunos estándares y guías metodológicas
  3. Diseño industrial
  4. Diseño de los elementos de mando e indicación
  5. Colores en los órganos de servicio
  6. Localización y uso de elementos de mando
  1. Origen de la guía GEMMA
  2. Fundamentos de GEMMA
  3. Rectángulos-estado: procedimientos de funcionamiento, parada o defecto
  4. Metodología de uso de GEMMA
  5. Selección de los modos de marcha y de paro
  6. Implementación de GEMMA a GRAFCET
  7. Método por enriquecimiento del GRAFCET de base
  8. Método por descomposición por TAREAS: coordinación vertical o jerarquizada
  9. Tratamiento de alarmas con GEMMA
  1. Paquetes software comunes
  2. Módulo de configuración
  3. Herramientas de interfaz gráfica del operador
  4. Utilidades para control de proceso
  5. Representación de Trending
  6. Herramientas de gestión de alarmas y eventos
  7. Registro y archivado de eventos y alarmas
  8. Herramientas para creación de informes
  9. Herramienta de creación de recetas
  10. Configuración de comunicaciones
  1. Criterios iniciales para el diseño
  2. Arquitectura
  3. Consideraciones en la distribución de las pantallas
  4. Elección de la navegación por pantallas
  5. Uso apropiado del color
  6. Correcta utilización de la Información textual
  7. Adecuada definición de equipos, estados y eventos de proceso
  8. Uso de la información y valores de proceso
  9. Tablas y gráficos de tendencias
  10. Comandos e ingreso de datos
  11. Correcta implementación de Alarmas
  12. Evaluación de diseños SCADA

metodología

Con nuestra metodología de aprendizaje online, el alumno comienza su andadura en INESEM Business School a través de un campus virtual diseñado exclusivamente para desarrollar el itinerario formativo con el objetivo de mejorar su perfil profesional. El alumno debe avanzar de manera autónoma a lo largo de las diferentes unidades didácticas así como realizar las actividades y autoevaluaciones correspondientes.La carga de horas de la acción formativa comprende las diferentes actividades que el alumno realiza a lo largo de su itinerario. Las horas de teleformación realizadas en el Campus Virtual se complementan con el trabajo autónomo del alumno, la comunicación con el docente, las actividades y lecturas complementarias y la labor de investigación y creación asociada a los proyectos. Para obtener la titulación el alumno debe aprobar todas la autoevaluaciones y exámenes y visualizar al menos el 75% de los contenidos de la plataforma. Por último, es necesario notificar la finalización de la acción formativa desde la plataforma para comenzar la expedición del título.
claustro

Claustro de Profesores Especializado

Realizará un seguimiento personalizado del aprendizaje del alumno.

campus virtual

Campus virtual

Acceso ilimitado desde cualquier dispositivo 24 horas al día los 7 días de la semana al Entorno Personal de Aprendizaje.

materiales didácticos

Materiales didácticos

Apoyo al alumno durante su formación.

material adicional

Material Adicional

Proporcionado por los profesores para profundizar en cuestiones indicadas por el alumno.

Centro de atención al estudiante (CAE)

Centro de atención al estudiante (CAE)

Asesoramiento al alumno antes, durante, y después de su formación con un teléfono directo con el claustro docente 958 050 242.

inesem emplea

INESEM emplea

Programa destinado a mejorar la empleabilidad de nuestros alumnos mediante orientación profesional de carrera y gestión de empleo y prácticas profesionales.

comunidad

Comunidad

Formada por todos los alumnos de INESEM Business School para debatir y compartir conocimiento.

revista digital

Revista Digital INESEM

Punto de encuentro de profesionales y alumnos con el que podrás comenzar tu aprendizaje colaborativo.

masterclass

Master Class INESEM

Aprende con los mejores profesionales enseñando en abierto. Únete, aprende y disfruta.

becas

Becas y financiación del Master en Robótica y Automatización Industrial + 8 Créditos ECTS

Hemos diseñado un Plan de Becas para facilitar aún más el acceso a nuestra formación junto con una flexibilidad económica. Alcanzar tus objetivos profesionales e impulsar tu carrera profesional será más fácil gracias a los planes de Inesem.

Si aún tienes dudas solicita ahora información para beneficiarte de nuestras becas y financiación.

20% Beca Antiguos Alumnos

Como premio a la fidelidad y confianza de los alumnos en el método INESEM, ofrecemos una beca del 20% a todos aquellos que hayan cursado alguna de nuestras acciones formativas en el pasado.

20% Beca Desempleo

Para los que atraviesan un periodo de inactividad laboral y decidan que es el momento idóneo para invertir en la mejora de sus posibilidades futuras.

15% Beca Emprende

Una beca en consonancia con nuestra apuesta por el fomento del emprendimiento y capacitación de los profesionales que se hayan aventurado en su propia iniciativa empresarial.

15% Beca Amigo

La beca amigo surge como agradecimiento a todos aquellos alumnos que nos recomiendan a amigos y familiares. Por tanto si vienes con un amigo o familiar podrás contar con una beca de 15%.

Financiación 100% sin intereses

* Becas aplicables sólamente tras la recepción de la documentación necesaria en el Departamento de Asesoramiento Académico. Más información en el 958 050 205 o vía email en formacion@inesem.es

* Becas no acumulables entre sí.

* Becas aplicables a acciones formativas publicadas en inesem.es

titulación

Titulación múltiple:

  • Título Propio Master en Robótica y Automatización Industrial expedido por el Instituto Europeo de Estudios Empresariales (INESEM)
  • Instituto Europeo de Estudios Empresariales
  • Título Propio Universitario en Robótica expedido por la Universidad Antonio de Nebrija con 4 créditos ECTS
  • Título Propio Universitario en Autómatas Programables expedido por la Universidad Antonio de Nebrija con 4 créditos ECTS
Certificado Universidad Antonio de Nebrija 

INESEM Business School se ocupa también de la gestión de la Apostilla de la Haya, previa demanda del estudiante. Este sello garantiza la autenticidad de la firma del título en los 113 países suscritos al Convenio de la Haya sin necesidad de otra autenticación. El coste de esta gestión es de 30 euros. Si deseas más información contacta con nosotros en el 958 050 205 y resolveremos todas tus dudas.

claustro

Claustro de profesores:
Manuel
Manuel Rodriguez Gutierrez

Ingeniero Técnico Industrial en Electrónica por la Universidad de Jaén con especialización en automatización y energía. Experto Universitario en Energías y Eficiencia Energética por la Universidad de Sevilla y Máster en PRL. Durante 10 años ha ejercido como Project Manager en áreas de infraestructuras energéticas e instalaciones industriales.

Leer más
Rogelio
Rogelio Delgado Mingorance

Ingeniero Técnico Industrial Especialidad en Electricidad e Ingeniero de Organización Industrial por la Universidad de Jaén. Durante 7 años ha ejercido como proyectista y director de obra de instalaciones eléctricas, fontanería, climatización y legalizaciones. Tiene más de 5 años de experiencia docente en áreas como electricidad, energías renovables, producción, almacenaje.

Leer más
Víctor
Víctor Acosta Gómez

Ingeniero superior en desarrollo de aplicaciones informáticas por la Universidad de Granada. Cuenta con más de 25 años de experiencia en ciberseguridad y desarrollando proyectos de aplicaciones web e industriales de trazabilidad. Tiene amplia experiencia en formación ocupacional y profesional tanto presencial como elearning, colaborando como docentes en varias universidades.

Leer más
Paula
Paula Rochina

Ingeniera Técnica en informática de sistemas por la UGR. Cuenta con amplia experiencia en la divulgación científica, participando, entre otros proyectos, en el acercamiento de la robótica educativa a la educación primaria y secundaria y el sector de la educación relacionado con las TICs. Además cuenta con un Master universitario en formación del profesorado.

Leer más
TAMBIÉN PODRÍA INTERESARTE...
Otras Acciones Formativas relacionadas
Master Robótica y Domótica + 12 Créditos ECTS
Online | 1500 h. | 1595 EUR
Master en Automatización Industrial
Online | 1500 h. | 1970 EUR
Curso Superior Robótica Industrial.: Implantación , Componentes y Programación (Titulación Universitaria + 8 Créditos ECTS)
Online | 200 h. | 360 EUR

5 RAZONES

PARA ELEGIR INESEM

Hay muchas más motivos ¿Quieres conocerlos?

Por qué matricularme en INESEM
logo
ARTÍCULOS RELACIONADOS
INESEM EMPLEA

Completa tu formación con nuestro Servicio de Orientación Profesional y nuestro Programa de Entrenamiento por Competencias.

inesem emplea inesem emplea inesem emplea
Universidades colaboradoras
La universidad Antonio de Nebrija es Universidad colaboradora con INESEM Business School La universidad a Distancia de Madrid es Universidad colaboradora con INESEM Business School