Master en Técnicas Estadísticas + 60 Créditos ECTS
practicas
Prácticas Garantizadas
convocatoria
Convocatoria Abierta
modalidad
Online
duracion
1500 H
creditos ects
Créditos
60 ECTS
precio
1970 EUR 1576 EUR
practicas
Prácticas
Garantizadas
convocatoria
Convocatoria
Abierta
Las acciones formativas de INESEM tienen modalidad online
Modalidad
Online
Duración de las acciones formativas de INESEM
Duración
1500 H
Créditos de las acciones formativas de INESEM
Créditos
60 ECTS
BECA 20 %
Precio: 1970 EUR AHORA: 1576 EUR
Hasta el 29/10/2021
¡Puedes fraccionar tus pagos cómodamente!

Cuota

1576 €
350 €/primer mes
Resto de plazos: 1226 €/mes

Presentación

Hoy en día la figura del investigador es muy importante en cualquier ámbito, por lo que la formación que estos profesionales reciban debe ser de calidad para afrontar su trabajo con éxito. Gracias a la realización de este Máster en Técnicas Estadísticas conocerá los aspectos teóricos y prácticos de la investigación a través del conocimiento de sus componentes.
Universidad:
La universidad Antonio de Nebrija es Universidad colaboradora con INESEM Business School
plan de estudios

Para qué te prepara
El presente Máster en Técnicas Estadísticas le proporcionará los conocimientos necesarios para poder especializarse en las técnicas estadísticas, algo muy demandado hoy día gracias a los análisis realizados por diferentes entidades tanto públicas como privadas. Con este máster universitario online podrás conocer y dominar los métodos de análisis más empleados en el ámbito profesional de la estadística, capacitándote para el desarrollo de una carrera profesional en el sector. Además, al finalizar el programa de estudios recibirás un título de máster universitario acreditado con 60 créditos ECTS, lo que le confiere una gran validez tanto a nivel laboral como académico.

Objetivos
  • A través de este máster universitario se ofrece al alumnado la posibilidad de completar sus estudios y dominar en los métodos y análisis más importantes en el ámbito de la estadística, que le permitirán desarrollar su carrera profesional en uno de los sectores con mayor demanda de personal cualificado. Para ello, a lo largo de este máster se pretenden desarrollar las siguientes competencias:
  • Conocer los métodos o tácticas de la investigación social.
  • Aprender los tipos de encuesta que se encuentran en la investigación social.
  • Conocer las clases de muestreos aleatorios que hay.
  • Aprender los pasos para la elaboración del cuestionario.
  • Conocer los errores asociados al muestreo.
  • Conocer los distintos modelos de probabilidad.
  • Conocer las probabilidades de distribución.
  • Conocer la regresión
  • correlación.
  • Conocer la programación lineal.
  • Conocer las aplicaciones de la programación lineal.
  • Abordar la optimización de procesos.
  • Conocer la estadística espacial.
  • Conocer las distintas aplicaciones de la estadística espacial.
  • Realizar análisis sobre los procesos productivos.
  • Aplicar controles estadísticos a los procesos productivos.
  • Aprender qué son los datos funcionales.
  • Aprender transformar los datos discretos en funciones.

A quién va dirigido
El presente curso de Máster en Técnicas Estadísticas está dirigido a todos aquellos recién titulados en estadística que quieran ampliar sus conocimientos y un sector muy demandado gracias al auge de los análisis estadísticos con fines de investigación y comerciales. Se dirige a profesionales, estudiantes y titulados en el ámbito de la estadística y otras áreas afines, que quieran ampliar o actualizar sus conocimientos y recibir un título universitario reconocido con 60 créditos ECTS con el que poder acreditar los estudios superados.

Salidas Profesionales
Una vez completado de forma satisfactoria el programa de estudios de este máster universitario, el alumnado habrá adquirido los conocimientos y competencias profesionales adecuadas para poner en práctica los principales métodos de análisis empleados en el ámbito de la estadística, aplicables en diferentes campos como la Psicología, la Investigador social, la investigación de mercado, realización de encuestas, gestión y organización del Trabajo de campo, etc.

temario

  1. Experimento aleatorio
  2. Espacio muestral
  3. Suceso
  4. Intersección de sucesos
  5. Probabilidad clásica
  6. Probabilidad condicional
  7. Ley de probabilidad total
  8. Teorema de Bayes
  9. Variables aleatorias
  10. Desigualdad de Chebyschev
  11. Distribución normal
  1. Modelos discretos
  2. Distribución dicotómica (Bernoulli)
  3. Distribución binomial
  4. Distribución hipergeométrica
  5. Modelo de poisson
  1. Distribución continua
  2. Distribución uniforme
  3. Distribución exponencial
  4. Distribución normal
  1. Aproximación de una Binomial por una Poisson
  2. Aproximación de una Binomial por una Normal
  3. Aproximación de una distribución de Poisson por una Normal
  4. Corrección por continuidad
  1. Regresión lineal
  2. Coeficiente de Pearson
  3. Coeficiente de Spearman
  4. Coeficiente Tau de Kendall
  5. Correlación Jackknife
  1. La regresión logística
  2. Dónde y cuándo aplicarla
  3. Cómo interpretarla
  4. Precauciones
  1. Análisis de supervivencia
  2. Conceptos básicos
  3. Supervivencia y riesgo
  4. Metodología estadística
  5. Regresión de Cox
  6. Método de Kaplan-Meier
  1. Introducción
    1. - Historia de la programación lineal
    2. - Métodos de solución
  2. Teorema fundamental
    1. - Enunciado
    2. - Demostración
  3. Implicaciones del teorema fundamental
  4. Ejemplos de aplicación
    1. - Pasos para resolver un problema de programación lineal
  1. Modelización
    1. - Modelo de transporte
    2. - Modelo de asignación
    3. - Modelo de ordenación de tareas
    4. - Modelo de la mochila
  2. Algoritmo de Ford-Fulkerson
  3. Caminos hamiltonianos de coste mínimo
  4. Algoritmo de Kruskal
  5. PERT-CPM
  1. Introducción
  2. Método de representación gráfica
  3. Método simplex
  4. Método de las dos fases
  5. Método de la M grande
  6. Método Lemke
  7. Cambios de variable
  1. Introducción
    1. - Teoría
  2. Costes relativos o sombra
  3. Las variables de holgura
  4. Inclusión de variables
  5. Añadir nuevas restricciones
  1. Introducción
  2. Teoría sobre dualidad
    1. - El problema dual
    2. - El problema primal
    3. - La función objetivo
    4. - Teorema fundamental de la dualidad
  3. Interpretación económica de las variables duales
  4. Algoritmo del simplex dual
  1. Introducción
    1. - Conceptos básicos
  2. Regla de entrada
  3. Regla de salida
  4. Criterio de optimalidad
  5. Soluciones a problemas
  1. Introducción
  2. Dividir un problema
  3. Métodos de resolución de problemas de programación entera
    1. - Métodos de planos de corte
    2. - Métodos enumerativos
    3. - Métodos heurísticos
  4. Branch and Bound
    1. - Ejemplo
  5. Optimalidad y relajación
  1. ¿Qué es la estadística?
    1. - Tipos de estadística
  2. Estadística espacial
    1. - Datos espaciales
    2. - Infraestructura de Datos Espaciales (IDE)
    3. - Parámetros estadísticos
  3. Estadísticas sobre líneas
  4. Autocorrelación espacial
  5. Variograma
  1. ¿Qué son los modelos lineales?
    1. - Componentes de un modelo generalizado lineal
  2. Modelo de regresión lineal
  3. Modelo de análisis de varianza
  4. Algoritmo de Gibbs Sampling
  1. Introducción
  2. Correlación lineal y regresión lineal
    1. - Correlación lineal
  3. Correlación espacial
    1. - Índices de correlación espacial
  4. Variograma
    1. - Semivariograma
    2. - Variables regionalizadas
  5. Método Kriging
  1. Introducción
  2. Análisis exploratorio de datos espaciales
  3. Métodos gráficos
  4. Conclusiones
  1. ¿Qué es un patrón?
  2. Modelo de distribución espacial
  3. Patrones espaciales
    1. - Análisis de patrones espaciales
  4. Medidas centrográficas
  5. Patrones de puntos
    1. - Cuadrantes
    2. - Vecino más cercano
    3. - Función K de Ripley
  1. Introducción
  2. Concepto de función de distribución
  3. Concepto de función de probabilidad
  4. Distribuciones más utilizadas en estadística
  5. Teorema central del límite
    1. - Ejemplo del teorema central del límite
  1. Introducción
  2. Metodología de investigación
    1. - Metodología
    2. - Método científico
  3. Métodos o tácticas
    1. - Experimental
    2. - Correlacional
    3. - Observacional
  4. Técnicas
  5. Elección del método y las técnicas
    1. - Criterios de selección del método y las técnicas
  6. Las técnicas en sí mismas
  1. Introducción
  2. Historia de las encuestas en la investigación social
    1. - La aritmética política
    2. - La estadística moral
    3. - El movimiento de Encuestas y Monografías Sociales
    4. - Marx y Weber
    5. - El estudio de las actitudes
    6. - Las votaciones particulares
    7. - Gallup, Roper y Crossley
  3. ¿Qué son las encuestas?
    1. - La encuesta y las técnicas de investigación
    2. - La encuesta: una técnica para explorar, describir y explicar la realidad social
    3. - Propuesta de una definición de encuesta
  4. Tipos de encuesta
    1. - La encuesta personal
    2. - La encuesta de correo
    3. - La encuesta telefónica
    4. - Otros tipos de encuesta
    5. - La elección del tipo de encuesta más adecuada en función de sus ventajas e inconvenientes
  5. El proceso general de investigación mediante encuestas
  1. Abordaje directo de la población
  2. Solución: encuestar sólo a una muestra
    1. - A la búsqueda de una solución
    2. - Representatividad de las muestras
    3. - Fases en la obtención de una muestra
  3. Acerca del tamaño de la muestra
    1. - Importancia del concepto
    2. - Algunos consejos
    3. - Expresiones de cálculo
  4. Muestras no aleatorias
  5. Muestreo aleatorio
    1. - Muestreo aleatorio simple
    2. - Muestreo sistemático con arranque aleatorio
    3. - Muestreo estratificado
    4. - Muestreo de conglomerados
    5. - Variantes
    6. - ¿Cómo escoger un procedimiento de muestreo?
  6. Errores de muestreo
    1. - El error muestral y sus expresiones asociadas
    2. - El error muestral y la estimación
    3. - Riesgo en la estimación
    4. - Un ejemplo concreto
  7. Consecuencias del muestreo en el análisis de los datos
    1. - Ponderación
    2. - Varianzas
    3. - Modelos de muestreo en el software al uso
  8. Problemas prácticos
    1. - Problemas con la base de datos
    2. - Problemas con la ausencia de respuesta
    3. - Los encuestadores
  9. Software para el muestreo: SOTAM
  1. Introducción
  2. Encuestas por correo
  3. Encuestas por teléfono
  4. Encuestas cara a cara: muestreo por cuotas
  5. Encuestas cara a cara: muestreo por rutas aleatorias
    1. - Construcción de la ruta aleatoria
    2. - Selección del encuestado en la vivienda
  1. Introducción
  2. ¿Qué es un cuestionario?
  3. ¿Por qué utilizar un cuestionario?
  4. Esquema conceptual para orientar la elaboración del cuestionario
    1. - Las variables son constructos
  5. Pasos para la elaboración del cuestionario
  6. El objetivo del cuestionario
    1. - El contexto de la encuesta
    2. - Los recursos disponibles
  7. El diseño del cuestionario
  8. Recomendaciones para hacer las preguntas del cuestionario
    1. - Recomendaciones para elaborar preguntas factuales
    2. - Preguntas abiertas comparadas con preguntas cerradas
    3. - Preguntas llave o filtro
  9. Medición de estados subjetivos
    1. - Tests de ordenación
    2. - Tests tipo Likert
  10. Revisión de las preguntas
    1. - Procedimientos subjetivos
    2. - Procedimientos empíricos
  11. Preguntas demográficas
  12. Orden y disposición de las preguntas en el cuestionario
  1. Introducción
  2. La selección de entrevistadores
  3. El entrenamiento de los entrevistadores
    1. - Entrenamiento genera]
    2. - Entrenamiento específico
    3. - Materiales y procedimientos de entrenamiento
  4. Acceso al campo
  5. La entrevista en sí
    1. - Concepto y tipos de entrevista
    2. - La realización de la entrevista
    3. - La revisión de !a entrevista
    4. - Supervisión y control
    5. - Feed-back
  6. Guía de la entrevista
  1. El trabajo de campo
    1. - Selección y formación de encuestadores
    2. - Coordinación, seguimiento y control del trabajo de campo
  2. Material para realizar el trabajo de campo
    1. - Manual o normas para encuestadores
    2. - Cuestionario
    3. - Carne o acreditación como encuestador
    4. - Tarjeta de agradecimiento y/o de la empresa
    5. - Hoja de resultados o incidencias
    6. - Ficha de campo
    7. - Punto de inicio de ruta
    8. - Teléfono de contacto
    9. - Cuaderno de notas
  1. Introducción
  2. Tratamiento de dalos
    1. - Términos comunes
    2. - Codificación de datos
    3. - Formato de los dalos
    4. - Escritura de los datos
    5. - Errores en los datos
  3. Análisis estadístico de datos
  1. Introducción
  2. Aprendiendo de los informes publicados
  3. Cuestiones y consideraciones generales
    1. - Cuestiones previas
    2. - Tipos de informes
    3. - Consideraciones generales
  4. El informe técnico y su presentación
    1. - Estructura del informe
    2. - Elementos de un informe
    3. - Presentación de datos
  1. Introducción
  2. Errores asociados al muestreo
    1. - La no respuesta
  3. Errores asociados con el cuestionario
    1. - Necesidad de hacer estudios piloto
  4. Errores asociados con la entrevista
    1. - Errores asociados a los encuestadores
    2. - La importancia en la supervisión
    3. - Repaso a la entrevista y cumplimentación correcta de cuestionarios
  5. Errores asociados con el tratamiento de datos
    1. - Errores en la codificación de datos
    2. - Errores asociados al registro o grabación de los datos
    3. - Errores en la preparación de los datos para el análisis
    4. - Imputación de dalos a las respuestas perdidas y a las no respuestas
  1. Introducción al control de la calidad.
  2. Conceptos básicos de calidad
  3. Estadística descriptiva
  4. Interpretación de los gráficos
  1. Conceptos de estadística
  2. Elementos básicos de probabilidad
  3. Experimentos
  1. Variables y atributos
  2. Variables aleatorias discretas
    1. - Distribución uniforme discreta
    2. - Distribución de Bernouilli
    3. - Distribución Binomial
    4. - Distribución de Poisson
  3. Variables aleatorias continuas
    1. - Distribución Uniforme Continua
    2. - Distribución Normal
    3. - Distribución Normal Tipificada o Estandarizada
    4. - Distribución Chi-Cuadrado de Pearson
    5. - Distribución t- Student
    6. - Distribución F-Snedecor
  1. Muestreo
  2. Técnicas de selección del muestreo
  3. Ventajas e inconvenientes de los distintos tipos de muestreo probabilístico
  1. Introducción a las hipótesis estadísticas
  2. Contraste de hipótesis
  3. Contraste de hipótesis paramétrico
    1. - Hipótesis en contrastes paramétricos
    2. - Estadístico de contraste
    3. - Potencia de un contraste
    4. - Propiedades del contraste
  4. Tipologías de error
  5. Contrastes no paramétricos
    1. - Chi-cuadrado
  1. Viabilidad
  2. Técnicas de viabilidad
  3. Pasos para un análisis de viabilidad
  4. Tipos de viabilidad
  1. ¿Qué es el Análisis Funcional?
    1. - Historia
    2. - Cálculo vectorial
  2. Espacios vectoriales
  3. Espacios normados
  4. Aplicaciones lineales y continuas
  1. Datos funcionales
  2. Lenguaje R
  3. Descargar una base de datos
  4. Abrir bases de datos desde formato SPSS
  5. Splines
  1. Conceptos básicos
  2. Espacios Lp
  3. Espacios de Banach
  4. Teoremas de Hann-Banach
  5. Teorema de la función abierta
  6. Teorema de la gráfica cerrada
  1. Conceptos básicos
  2. Espacios con producto interno
  3. Teorema de representación de Riesz
  4. Involución
  5. Operadores lineales acotados
    1. - Funcionales
    2. - Operadores de rango finito
    3. - Operadores adjuntos
    4. - Operadores autoadjuntos
    5. - Operadores compactos
  6. Teorema espectral
  1. ¿Qué es la regresión?
  2. Representación de Datos Funcionales en Bases
    1. - Operaciones:
    2. - Diferenciación
  3. Regresión
  4. Tratamiento de las covariables
  1. Terminología utilizada
  2. Ejercicios resueltos de espacios normados
  3. Ejercicios resueltos de operadores lineales

metodología

claustro

Claustro de Profesores Especializado

Realizará un seguimiento personalizado del aprendizaje del alumno.

campus virtual

Campus virtual

Acceso ilimitado desde cualquier dispositivo 24 horas al día los 7 días de la semana al Entorno Personal de Aprendizaje.

materiales didácticos

Materiales didácticos

Apoyo al alumno durante su formación.

material adicional

Material Adicional

Proporcionado por los profesores para profundizar en cuestiones indicadas por el alumno.

Centro de atención al estudiante (CAE)

Centro de atención al estudiante (CAE)

Asesoramiento al alumno antes, durante, y después de su formación con un teléfono directo con el claustro docente 958 050 242.

inesem emplea

INESEM emplea

Programa destinado a mejorar la empleabilidad de nuestros alumnos mediante orientación profesional de carrera y gestión de empleo y prácticas profesionales.

comunidad

Comunidad

Formada por todos los alumnos de INESEM Business School para debatir y compartir conocimiento.

revista digital

Revista Digital INESEM

Punto de encuentro de profesionales y alumnos con el que podrás comenzar tu aprendizaje colaborativo.

masterclass

Master Class INESEM

Aprende con los mejores profesionales enseñando en abierto. Únete, aprende y disfruta.

Clases online

Clases online

Podrás continuar tu formación y seguir desarrollando tu perfil profesional con horarios flexibles y desde la comodidad de tu casa.

Entre el material entregado en este curso se adjunta un documento llamado Guía del Alumno dónde aparece un horario de tutorías telefónicas y una dirección de e-mail dónde podrá enviar sus consultas, dudas y ejercicios. Además recibirá los materiales didácticos que incluye el curso para poder consultarlos en cualquier momento y conservarlos una vez finalizado el mismo.La metodología a seguir es ir avanzando a lo largo del itinerario de aprendizaje online, que cuenta con una serie de temas y ejercicios. Para su evaluación, el alumno/a deberá completar todos los ejercicios propuestos en el curso. La titulación será remitida al alumno/a por correo una vez se haya comprobado que ha completado el itinerario de aprendizaje satisfactoriamente.

becas

Becas y financiación

Hemos diseñado un Plan de Becas para facilitar aún más el acceso a nuestra formación junto con una flexibilidad económica. Alcanzar tus objetivos profesionales e impulsar tu carrera profesional será más fácil gracias a los planes de Inesem.

Si aún tienes dudas solicita ahora información para beneficiarte de nuestras becas y financiación.

20% Beca Antiguos Alumnos

Como premio a la fidelidad y confianza de los alumnos en el método INESEM, ofrecemos una beca del 20% a todos aquellos que hayan cursado alguna de nuestras acciones formativas en el pasado.

20% Beca Desempleo

Para los que atraviesan un periodo de inactividad laboral y decidan que es el momento idóneo para invertir en la mejora de sus posibilidades futuras.

15% Beca Emprende

Una beca en consonancia con nuestra apuesta por el fomento del emprendimiento y capacitación de los profesionales que se hayan aventurado en su propia iniciativa empresarial.

15% Beca Amigo

La beca amigo surge como agradecimiento a todos aquellos alumnos que nos recomiendan a amigos y familiares. Por tanto si vienes con un amigo o familiar podrás contar con una beca de 15%.

Financiación 100% sin intereses

Información sobre becas Becas aplicables sólamente tras la recepción de la documentación necesaria en el Departamento de Asesoramiento Académico. Más información en el 958 050 205 o vía email en formacion@inesem.es

Información sobre becas * Becas no acumulables entre sí.

Información sobre becas * Becas aplicables a acciones formativas publicadas en inesem.es

Información sobre becas * Becas no aplicables a formación programada.

titulación

Titulación Universitaria en Máster en Técnicas Estadísticas expedida por la UNIVERSIDAD ANTONIO DE NEBRIJA con 60 Créditos Universitarios ECTS
Titulación:
Logo MANI - Nebrija INESEM

claustro

Claustro de profesores:
Francisco Antonio
Francisco Antonio Navarro Matarín

Técnico Superior en PRL y Director de Seguridad habilitado por el Ministerio del Interior. Máster en Dirección y Gestión de Proyectos. Cuenta con una dilatada experiencia profesional en el sector de la Seguridad y Salud Laboral y en Sistemas de Gestión Empresarial (Calidad, PRL, Medioambiente, RSC, Seguridad Privada). En los últimos ocho años está centrado en la formación y capacitación de profesionales en el ámbito empresarial.

Leer más
María Inmaculada
María Inmaculada González Segovia

Licenciada en Administración y Dirección de Empresas y en Derecho por la Universidad de Granada. Máster en Gestión Empresarial de la I+D+i y en Derecho de Familia. Con más de 10 años de experiencia en la dirección, gestión y control de empresas. Experta en desarrollo de negocio y procesos de innovación. Cuenta con experiencia en el área educativa, impartiendo formación en Cámaras de Comercio y centros de formación profesional. Actualmente trasmite sus conocimientos en el área de Gestión Empresarial en INESEM.

Leer más
Daniel
Daniel Rodriguez

Ingeniero Técnico en Informática de Sistemas, analista programador de aplicaciones web usando la plataforma de desarrollo ASP‎.‎NET con C‎# así también como desarrollo de aplicaciones usando PHP. Experto en bases de datos SQL Server y MySql y conexión con aplicaciónes web mediante ORM como NHibernate y Entity Framework además del uso de  ADO.net.  Actualmente jefe de proyecto en Innoforma Elearning Technologies.

Leer más
Rafael
Rafael Marín

Ingeniero técnico en Informática de Sistemas por la UGR. Cuenta con más de 5 años de experiencia y vocación en el ámbito de las tecnologías TIC y la programación de aplicaciones informáticas. Especializado en data science, big data y business intelligence y apasionado por la Inteligencia Artificial. 

Leer más

5 RAZONES

PARA ELEGIR INESEM

Hay muchas más motivos ¿Quieres conocerlos?

Por qué matricularme en INESEM
logo
ARTÍCULOS RELACIONADOS
Cargando artículos
INESEM EMPLEA

Completa tu formación con nuestro Servicio de Orientación Profesional y nuestro Programa de Entrenamiento por Competencias.

inesem emplea inesem emplea inesem emplea
Universidades colaboradoras
La universidad Antonio de Nebrija es Universidad colaboradora con INESEM Business School La universidad a Distancia de Madrid es Universidad colaboradora con INESEM Business School