Master en Business Intelligence y Big Data
practicas
Prácticas Garantizadas
convocatoria
Convocatoria Abierta
modalidad
ONLINE
duracion
1500 H
creditos ects
Créditos
60 ECTS
precio
1970 EUR 1576 EUR
practicas
Prácticas
Garantizadas
convocatoria
Convocatoria
Abierta
Las acciones formativas de INESEM tienen modalidad online
Modalidad
ONLINE
Duración de las acciones formativas de INESEM
Duración
1500 H
Créditos de las acciones formativas de INESEM
Créditos
60 ECTS
BECA 20 %
Precio: 1970 EUR AHORA: 1576 EUR
Hasta el 26/09/2019

Presentación

El Big Data se consolida como la gran tendencia para el tratamiento de enormes cantidades de información, tan grandes que las bases de datos convencionales no pueden manejar. El Master Business Intelligence y Big Data aclara conceptos como NoSQL, Data Warehouse y Data Mining; y se enfoca a la aplicación práctica a través de la programación estadística, presentando todas las herramientas y capacidades de un profesional de alto nivel.

En colaboración con:
La universidad Antonio de Nebrija es Universidad colaboradora con INESEM Business School
plan de estudios

Para qué te prepara

El Master Business Intelligence y Big Data analiza las herramientas y técnicas de análisis de  datos e inteligencia de negocio basada. La recopilación y uso de datos procedentes de la web se ha consolidado como una tendencia para empresas de  todos los sectores, ofreciendo enormes posibilidades económicas.  La analítica  web y el BI, juegan un papel cada vez más relevante en este campo, como  herramientas para la toma de decisiones  estratégicas.


Objetivos
  • Conocer e identificar las fases de un proyecto Big Data.
  • Aprender los conceptos de Bases de Datos NoSQL, Data Warehouse y Data Mining, así como su  aplicación.
  • Crear y gestionar una base de datos en MongoDB y procesar datos con Hadoop
  • Entender qué es la inteligencia de negocio y qué tipos  de herramientas existen para su aplicación
  • Gestionar  Pentaho y su integración con MogoDb, Hadoop y Weka, para el análisis y  procesamiento de los datos.
  • Comprender el uso de la analítica web para Big Data y su aplicación mediante la herramienta  de Google Analytics.
  • Realizar una programación estadística básica en Python y R.

A quién va dirigido

El Master Business Intelligence y Big Data está dirigido diversos perfiles y es aplicable a numerosos sectores, puesto que es adecuado para todos aquellos graduados o diplomados universitarios que deseen adquirir conocimientos sobre tecnologías de análisis y procesamiento de datos. Además, se trata de una titulación de 60ECTS expedida por la Universidad de Nebrija.


Salidas Profesionales

El Master Business Intelligence y Big Data te aporta los conocimientos  necesarios para trabajar como analista  de datos, auditor de sistemas Big Data, experto en inteligencia de negocio,  arquitecto de soluciones Big Data, gestor de infraestructuras o experto en  e-commerce y social media, entre otros.

temario

  1. ¿Qué es Big Data?
  2. La era de las grandes cantidades de información: historia del big data
  3. La importancia de almacenar y extraer información
  4. Big Data enfocado a los negocios
  5. Open Data
  6. Información pública
  7. IoT (Internet of Things - Internet de las cosas)
  1. Definiendo el concepto de Business Intelligence y sociedad de la información
  2. Arquitectura de una solución Business Intelligence
  3. Business Intelligence en los departamentos de la empresa
  4. Conceptos de Plan Director, Plan Estratégico y Plan de Operativa Anual
  5. Sistemas Operacionales y Procesos ETL en un sistema de BI
  6. Ventajas y Factores de Riesgos del Business Intelligence
  1. Diagnóstico inicial
  2. Diseño del proyecto
  3. Proceso de implementación
  4. Monitorización y control del proyecto
  5. Responsable y recursos disponibles
  6. Calendarización
  7. Alcance y valoración económica del proyecto
  1. Cuadros de Mando Integrales (CMI)
  2. Sistemas de Soporte a la Decisión (DSS)
  3. Sistemas de Información Ejecutiva (EIS)
  1. Introducción a la minería de datos y el aprendizaje automático
  2. Proceso KDD
  3. Modelos y Técnicas de Data Mining
  4. Áreas de aplicación
  5. Minería de textos y Web Mining
  6. Data mining y marketing
  1. Aproximación al concepto de DataMart
  2. Bases de datos OLTP
  3. Bases de Datos OLAP
  4. MOLAP, ROLAP & HOLAP
  5. Herramientas para el desarrollo de cubos OLAP
  1. Visión General. ¿Por qué DataWarehouse?
  2. Estructura y Construcción
  3. Fases de implantación
  4. Características
  5. Data Warehouse en la nube
  1. Tipos de herramientas para BI
  2. Productos comerciales para BI
  3. Productos Open Source para BI
  4. Beneficios de las herramientas de BI
  1. ¿Qué es una base de datos NoSQL?
  2. Bases de datos Relaciones Vs Bases de datos NoSQL
  3. Tipo de Bases de datos NoSQL: Teorema de CAP
  4. Sistemas de Bases de datos NoSQL
  1. ¿Qué es MongoDB?
  2. Funcionamiento y uso de MongoDB
  3. Primeros pasos con MongoDB: Instalación y shell de comandos
  4. Creando nuestra primera Base de Datos NoSQL: Modelo e Inserción de Datos
  5. Actualización de datos en MongoDB: Sentencias set y update
  6. Trabajando con índices en MongoDB para optimización de datos
  7. Consulta de datos en MongoDB
  1. ¿Qué es Hadoop?
  2. El sistema de archivos HDFS
  3. Algunos comandos de referencia
  4. Procesamiento MapReduce con Hadoop
  5. El de los clusters en Hadoop
  1. ¿Qué es Weka?
  2. Técnicas de Data Mining en Weka
  3. Interfaces de Weka
  4. Selección de atributos
  1. Una aproximación a Pentaho
  2. Soluciones que ofrece Pentaho
  3. MongoDB & Pentaho
  4. Hadoop & Pentaho
  5. Weka & Pentaho
  1. Introducción
  2. La Analítica Web: Un reto cultural
  3. ¿Qué puede hacer la analítica web por ti o tu empresa?
  4. Glosario de Analítica Web
  1. La analítica web en la actualidad
  2. Definiendo la analítica web
  3. El salto a la analítica web moderna
  1. Identificar los factores críticos
  2. Otros factores que convienen medir
  3. Las macro y microconversiones
  4. Medir el valor económico
  5. Sitios sin comercio: valores a medir
  6. Medición de sitios BB
  1. Introducción
  2. La usabilidad Web
  3. Pruebas Online y a Distancia
  4. Las encuestas
  1. Definición de KPIs
  2. KPI, CSF y metas
  3. Principales KPIS
  4. Ejemplos de KPIS
  5. Supuesto práctico: Cálculo de KPI con Excel
  1. Introducción
  2. Recopilar datos de Inteligencia Competitiva
  3. Análisis del tráfico de sitios web
  4. Búsquedas
  1. Introducción
  2. La nueva web social y como medir datos
  3. Las aplicaciones
  4. Analizar el comportamiento desde el móvil
  5. Analizar el rendimiento de los vídeos
  1. Análisis de Blogs
  2. Coste y beneficios de escribir en un blog
  3. Nuestro impacto en Twitter
  4. Métricas para Twitter
  1. La calidad de los datos
  2. Obtener datos válidos
  3. ¿En qué basarnos para la toma de decisiones?
  4. Beneficios de análisis multicanal
  1. Segmentación en base al comportamiento
  2. Predicción y minería de datos
  3. Rumbo a la analítica inteligente
  1. Concepto de web semántica
  2. Linked Data Vs Big Data
  3. Lenguaje de consulta SPARQL
  1. Introducción a la analítica web
  2. Funcionamiento Google Analytics
  3. Instalación y configuración de Google Analytics
  4. Configuración de las vistas mediante filtros
  1. Navegación por Google Analytics
  2. Informes de visión general
  3. informes completos
  4. Compartir informes
  5. Configuración paneles de control y accesos directos
  1. Informes de Audiencia
  2. Informes de Adquisición
  3. Informes de Comportamiento
  1. Campañas personalizadas
  2. Realizar un seguimiento de las campañas con el Creador de URLs
  3. Configuración y medición de objetivos
  4. Cómo medir campañas de Google Ads
  1. Introducción a Python
  2. ¿Qué necesitas?
  3. Librerías para el análisis de datos en Python
  4. MongoDB, Hadoop y Python: Dream Team del Big Data
  1. Introducción a R
  2. ¿Qué necesitas?
  3. Tipos de datos
  4. Estadística Descriptiva y Predictiva con R
  5. Integración de R en Hadoop

metodología

claustro

Claustro de Profesores Especializado

Realizará un seguimiento personalizado del aprendizaje del alumno.

campus virtual

Campus virtual

Acceso ilimitado desde cualquier dispositivo 24 horas al día los 7 días de la semana al Entorno Personal de Aprendizaje.

materiales didácticos

Materiales didácticos

Apoyo al alumno durante su formación.

material adicional

Material Adicional

Proporcionado por los profesores para profundizar en cuestiones indicadas por el alumno.

Centro de atención al estudiante (CAE)

Centro de atención al estudiante (CAE)

Asesoramiento al alumno antes, durante, y después de su formación con un teléfono directo con el claustro docente 958 050 242.

inesem emplea

INESEM emplea

Programa destinado a mejorar la empleabilidad de nuestros alumnos mediante orientación profesional de carrera y gestión de empleo y prácticas profesionales.

comunidad

Comunidad

Formada por todos los alumnos de INESEM Business School para debatir y compartir conocimiento.

revista digital

Revista Digital INESEM

Punto de encuentro de profesionales y alumnos con el que podrás comenzar tu aprendizaje colaborativo.

masterclass

Master Class INESEM

Aprende con los mejores profesionales enseñando en abierto. Únete, aprende y disfruta.

Clases online

Clases online

Podrás continuar tu formación y seguir desarrollando tu perfil profesional con horarios flexibles y desde la comodidad de tu casa.

Con nuestra metodología de aprendizaje online, el alumno comienza su andadura en INESEM Business School a través de un campus virtual diseñado exclusivamente para desarrollar el itinerario formativo con el objetivo de mejorar su perfil profesional. El alumno debe avanzar de manera autónoma a lo largo de las diferentes unidades didácticas así como realizar las actividades y autoevaluaciones correspondientes.La carga de horas de la acción formativa comprende las diferentes actividades que el alumno realiza a lo largo de su itinerario. Las horas de teleformación realizadas en el Campus Virtual se complementan con el trabajo autónomo del alumno, la comunicación con el docente, las actividades y lecturas complementarias y la labor de investigación y creación asociada a los proyectos. Para obtener la titulación el alumno debe aprobar todas la autoevaluaciones y exámenes y visualizar al menos el 75% de los contenidos de la plataforma. El Proyecto Fin de Máster se realiza tras finalizar el contenido teórico-práctico en el Campus. Por último, es necesario notificar la finalización del Máster desde la plataforma para comenzar la expedición del título.

becas

Becas y financiación del Master en Business Intelligence y Big Data

Hemos diseñado un Plan de Becas para facilitar aún más el acceso a nuestra formación junto con una flexibilidad económica. Alcanzar tus objetivos profesionales e impulsar tu carrera profesional será más fácil gracias a los planes de Inesem.

Si aún tienes dudas solicita ahora información para beneficiarte de nuestras becas y financiación.

20% Beca Antiguos Alumnos

Como premio a la fidelidad y confianza de los alumnos en el método INESEM, ofrecemos una beca del 20% a todos aquellos que hayan cursado alguna de nuestras acciones formativas en el pasado.

20% Beca Desempleo

Para los que atraviesan un periodo de inactividad laboral y decidan que es el momento idóneo para invertir en la mejora de sus posibilidades futuras.

15% Beca Emprende

Una beca en consonancia con nuestra apuesta por el fomento del emprendimiento y capacitación de los profesionales que se hayan aventurado en su propia iniciativa empresarial.

15% Beca Amigo

La beca amigo surge como agradecimiento a todos aquellos alumnos que nos recomiendan a amigos y familiares. Por tanto si vienes con un amigo o familiar podrás contar con una beca de 15%.

Financiación 100% sin intereses

* Becas aplicables sólamente tras la recepción de la documentación necesaria en el Departamento de Asesoramiento Académico. Más información en el 958 050 205 o vía email en formacion@inesem.es

* Becas no acumulables entre sí.

* Becas aplicables a acciones formativas publicadas en inesem.es

titulación

Titulación Propia Universitaria expedida por la Universidad Antonio de Nebrija con 60 créditos ECTS.
Titulación:
Logo MANI - Nebrija INESEM

claustro

Claustro de profesores:
Paula
Paula Rochina

Ingeniera Técnica en informática de sistemas por la UGR. Cuenta con amplia experiencia en la divulgación científica, participando, entre otros proyectos, en el acercamiento de la robótica educativa a la educación primaria y secundaria y el sector de la educación relacionado con las TICs. Además cuenta con un Master universitario en formación del profesorado.

Leer más
Rafael
Rafael Marín

Ingeniero técnico en Informática de Sistemas por la UGR. Cuenta con más de 5 años de experiencia y vocación en el ámbito de las tecnologías TIC y la programación de aplicaciones informáticas. Especializado en data science, big data y business intelligence y apasionado por la Inteligencia Artificial. 

Leer más
Víctor
Víctor Acosta Gómez

Ingeniero superior en desarrollo de aplicaciones informáticas por la Universidad de Granada. Cuenta con más de 25 años de experiencia en ciberseguridad y desarrollando proyectos de aplicaciones web e industriales de trazabilidad. Tiene amplia experiencia en formación ocupacional y profesional tanto presencial como elearning, colaborando como docentes en varias universidades.

Leer más
Bibiana
Bibiana Moreno Leyva

CEO de EducaLMS, proyecto de innovación educativa. Técnica superior en desarrollo de aplicaciones informáticas. Cuenta con más de seis años de experiencia profesional en la coordinación de análisis de aplicaciones multiplataforma y dos años en desarrollo de aplicaciones web con distintas infraestructuras.

Leer más
Daniel
Daniel Rodriguez

Ingeniero Técnico en Informática de Sistemas, analista programador de aplicaciones web usando la plataforma de desarrollo ASP‎.‎NET con C‎# así también como desarrollo de aplicaciones usando PHP. Experto en bases de datos SQL Server y MySql y conexión con aplicaciónes web mediante ORM como NHibernate y Entity Framework además del uso de  ADO.net.  Actualmente jefe de proyecto en Innoforma Elearning Technologies.

Leer más
Isaías
Isaías Aranda Cano

Especialista en ciberseguridad y en gestión de servicios de tecnologías de la información certificado en ITIL V3. Mas de 10 años de experiencia en tecnologías Open Source. Administrador de sistemas y responsable de TI, apasionado de las tecnologías abiertas y el software libre en infraestructuras de alta demanda. Grado superior en administración de sistemas informáticos.

Leer más

Opiniones de los alumnos

Lo escogí además de por la experiencia como alumna de INESEM, por su precio y duración. En algunos temarios he echado en falta más profundidad en los contenidos, no obstante he adquirido bastantes conocimientos a lo largo de la formación. Pero lo más relevante es que he profundizado en las herramientas para Business Intelligence y Big Data. Destacar la calidad en la atención del personal de INESEM, me encanta la plataforma, la encuentro muy intuitiva. Por supuesto que recomiendo la formación, de hecho ya la he recomendado a varios compañeros.

María Angeles S. A.
14 Nov 2018

El temario y las salidas profesionales que actualmente tiene estas tecnologías es un factor muy importante por el que hacer este curso, me ha gustado bastante, un poco largo y algunos temas un poco densos, pero en general muy bien estructurado y explicado. Además los docentes siempre están pendientes y te resuelven las dudas de manera rápida. Creo que es una formación muy recomendable ya que trata de temas muy actuales y con mucho futuro

Lorena R. G.
07 Mayo 2019

Me ha encantado el sistema docente, respondían de manera rápida y efectiva. He podido aprender todo lo necesario para poder aplicarlo a mi puesto de trabajo de cara a los requerimientos de mis clientes. Totalmente recomendable.

Martin B. M.
07 Feb 2019
Dónde realizan las prácticas nuestros alumnos:
TAMBIÉN PODRÍA INTERESARTE...
Otras Acciones Formativas relacionadas
Curso Superior en Desarrollo de BBDD para Big Data y Gestión de un Datawarehouse
Online | 200 h. | 420 336 EUR
Curso de Business Intelligence y Big Data (Titulación Universitaria con 4 Créditos ECTS)
Online | 110 h. | 260 208 EUR
Curso Superior en Analítica Web en Entornos Big Data
Online | 220 h. | 440 352 EUR
Curso Superior en Estadística Aplicada. Análisis de Datos y SPSS
Online | 200 h. | 420 336 EUR

5 RAZONES

PARA ELEGIR INESEM

Hay muchas más motivos ¿Quieres conocerlos?

Por qué matricularme en INESEM
logo
ARTÍCULOS RELACIONADOS
INESEM EMPLEA

Completa tu formación con nuestro Servicio de Orientación Profesional y nuestro Programa de Entrenamiento por Competencias.

inesem emplea inesem emplea inesem emplea
Universidades colaboradoras
La universidad Antonio de Nebrija es Universidad colaboradora con INESEM Business School La universidad a Distancia de Madrid es Universidad colaboradora con INESEM Business School