Master de Formación Permanente en Business Intelligence y Big Data + 60 Créditos
practicas
Prácticas Garantizadas
convocatoria
Convocatoria Abierta
modalidad
Online
duracion
1500 H
creditos ects
Créditos
60 ECTS
precio
1970 EUR 1576 EUR
practicas
Prácticas
Garantizadas
convocatoria
Convocatoria
Abierta
Las acciones formativas de INESEM tienen modalidad online
Modalidad
Online
Duración de las acciones formativas de INESEM
Duración
1500 H
Créditos de las acciones formativas de INESEM
Créditos
60 ECTS
BECA 20 %
Precio: 1970 EUR AHORA: 1576 EUR
Hasta el 30/03/2023
¡Puedes fraccionar tus pagos cómodamente!

Cuota

1576 €
350 €/primer mes
Resto de plazos: 1226 €/mes

Presentación

El Big Data se consolida como la gran tendencia para el tratamiento de enormes cantidades de información, tan grandes que las bases de datos convencionales no pueden manejar. El Master Business Intelligence y Big Data aclara conceptos como NoSQL, Data Warehouse y Data Mining y se enfoca a la aplicación práctica a través de la programación estadística, presentando todas las herramientas y capacidades de un profesional de alto nivel

En colaboración con:
La universidad Antonio de Nebrija es Universidad colaboradora con INESEM Business School
plan de estudios

Para qué te prepara

El Master Business Intelligence y Big Data analiza las herramientas y técnicas de análisis de  datos e inteligencia de negocio basada. La recopilación y uso de datos procedentes de la web se ha consolidado como una tendencia para empresas de  todos los sectores, ofreciendo enormes posibilidades económicas.  La analítica  web y el BI, juegan un papel cada vez más relevante en este campo, como  herramientas para la toma de decisiones  estratégicas.


Objetivos
  • Conocer e identificar las fases de un proyecto Big Data.
  • Aprender los conceptos de Bases de Datos NoSQL, Data Warehouse y Data Mining, así como su  aplicación.
  • Crear y gestionar una base de datos en MongoDB y procesar datos con Hadoop
  • Entender qué es la inteligencia de negocio y qué tipos  de herramientas existen para su aplicación
  • Gestionar  Pentaho y su integración con MogoDb, Hadoop y Weka, para el análisis y  procesamiento de los datos.
  • Comprender el uso de la analítica web para Big Data y su aplicación mediante la herramienta  de Google Analytics.
  • Realizar una programación estadística básica en Python y R

A quién va dirigido

El Master Business Intelligence y Big Data está dirigido diversos perfiles y es aplicable a numerosos sectores, puesto que es adecuado para todos aquellos graduados o diplomados universitarios que deseen adquirir conocimientos sobre tecnologías de análisis y procesamiento de datos. Además, se trata de una titulación de 60ECTS expedida por la Universidad de Nebrija..


Salidas Profesionales

El Master Business Intelligence y Big Data te aporta los conocimientos  necesarios para trabajar como analista  de datos, auditor de sistemas Big Data, experto en inteligencia de negocio,  arquitecto de soluciones Big Data, gestor de infraestructuras o experto en  e-commerce y social media, entre otros.

temario

  1. ¿Qué es Big Data?
  2. La era de las grandes cantidades de información Historia del big data
  3. La importancia de almacenar y extraer información
  4. Big Data enfocado a los negocios
  5. Open Data
  6. Información pública
  7. IoT (Internet of Things-Internet de las cosas)
  1. Definiendo el concepto de Business Intelligence y sociedad de la información
  2. Arquitectura de una solución de Business Intelligence
  3. Business Intelligence en los departamentos de la empresa
  4. Conceptos de Plan Director, Plan Estratégico y Plan de Operativa Anual
  5. Sistemas operacionales y Procesos ETL en un sistema de BI
  6. Ventajas y Factores de Riesgos del Business Intelligence
  1. Diagnóstico inicial
  2. Diseño del proyecto
  3. Proceso de implementación
  4. Monitorización y control del proyecto
  5. Responsable y recursos disponibles
  6. Calendarización
  7. Alcance y valoración económica del proyecto
  1. Cuadros de Mando Integrales (CMI)
  2. Sistemas de Soporte a la Decisión (DSS)
  3. Sistemas de Información Ejecutiva (EIS)
  1. Introducción a la minería de datos y el aprendizaje automático
  2. Proceso KDD
  3. Modelos y Técnicas de Data Mining
  4. Áreas de aplicación
  5. Minería de textos y Web Mining
  6. Data mining y marketing
  1. Aproximación al concepto de DataMart
  2. Procesos de extracción, transformación y carga de datos (ETL)
  3. Data Warehouse
  4. Herramientas de Explotación
  5. Herramientas para el desarrollo de cubos OLAP
  1. Visión General. ¿Por qué DataWarehouse?
  2. Estructura y Construcción
  3. Fases de implantación
  4. Características
  5. Data Warehouse en la nube
  1. Tipos de herramientas para BI
  2. Productos comerciales para BI
  3. Productos Open Source para BI
  4. Beneficios de las herramientas de BI
  1. ¿Qué es una base de datos NoSQL?
  2. Bases de datos Relaciones Vs Bases de datos NoSQL
  3. Tipo de Bases de datos NoSQL: Teorema de CAP
  4. Sistemas de Bases de datos NoSQL
  1. ¿Qué es MongoDB?
  2. Funcionamiento y uso de MongoDB
  3. Primeros pasos con MongoDB: Instalación y shell de comandos
  4. Creando nuestra primera Base de Datos NoSQL: Modelo e Inserción de Datos
  5. Actualización de datos en MongoDB: Sentencias set y update
  6. Trabajando con índices en MongoDB para optimización de datos
  7. Consulta de datos en MongoDB
  1. ¿Qué es Hadoop? Relación con Big Data
  2. Instalación y configuración de insfraestructura y ecosistema Hadoop
  3. Sistema de archivos HDFS
  4. MapReduce con Hadoop
  5. Apache Hive
  6. Apache Hue
  7. Apache Spark
  1. ¿Qué es Weka?
  2. Técnicas de Data Mining en Weka
  3. Interfaces de Weka
  4. Selección de atributos
  1. Una aproximación a Pentaho
  2. Soluciones que ofrece Pentaho
  3. MongoDB & Pentaho
  4. Hadoop & Pentaho
  5. Weka & Pentaho
  1. Introducción
  2. La Analítica Web: Un reto cultural
  3. ¿Qué puede hacer la analítica web por ti o tu empresa?
  4. Glosario de Analítica Web
  1. La analítica web en la actualidad
  2. Definiendo la analítica web
  3. El salto a la analítica web moderna
  1. Identificar los factores críticos
  2. Otros factores que convienen medir
  3. Las macro y microconversiones
  4. Medir el valor económico
  5. Sitios sin comercio: valores a medir
  6. Medición de sitios BB
  1. Introducción
  2. La usabilidad Web
  3. Pruebas Online y a Distancia
  4. Las encuestas
  1. Definición de KPIs
  2. KPI, CSF y metas
  3. Principales KPIS
  4. Ejemplos de KPIS
  5. Supuesto práctico: Cálculo de KPI con Excel
  1. Introducción
  2. Recopilar datos de Inteligencia Competitiva
  3. Análisis del tráfico de sitios web
  4. Búsquedas
  1. Introducción
  2. La nueva web social y como medir datos
  3. Las aplicaciones
  4. Analizar el comportamiento desde el móvil
  5. Analizar el rendimiento de los vídeos
  1. Análisis de Blogs
  2. Coste y beneficios de escribir en un blog
  3. Nuestro impacto en Twitter
  4. Métricas para Twitter
  1. La calidad de los datos
  2. Obtener datos válidos
  3. ¿En qué basarnos para la toma de decisiones?
  4. Beneficios de análisis multicanal
  1. Segmentación en base al comportamiento
  2. Predicción y minería de datos
  3. Rumbo a la analítica inteligente
  1. Concepto de web semántica
  2. Linked Data Vs Big Data
  3. Lenguaje de consulta SPARQL
  1. Introducción a la analítica web
  2. Funcionamiento Google Analytics
  3. Introducción e instalación de Google Analytics
  4. Interfaz
  5. Métricas y dimensiones
  6. Informes básicos
  7. Informes personalizados
  8. Comportamiento de los usuarios e interpretación de datos
  1. ¿Qué es Google Analytics 4?
  2. Diferencias con respecto a Universal Analytics
  3. Implementación de Google Analytics 4
  4. Las herramientas de análisis de Google Analytics 4
  5. Los espacios de identidad
  6. Ventajas de Google Analytics 4
  7. Desventajas de Google Analytics 4
  1. Planes de medición
  2. Configuración de las vistas mediante filtros
  3. Métricas y dimensiones personalizadas
  4. Seguimiento de eventos
  1. Informes de visión general
  2. informes completos
  3. Compartir informes
  4. Configuración paneles de control y accesos directos
  1. Informes de Audiencia
  2. Informes de Adquisición
  3. Informes de Comportamiento
  1. Campañas personalizadas
  2. Realizar un seguimiento de las campañas con el Creador de URLs
  3. Configuración y medición de objetivos
  4. Cómo medir campañas de Google Ads
  1. Analítica avanzada
  2. Informes sin muestrear
  3. Google BigQuery Export
  4. Integraciones
  1. Concepto y características
  2. Gestión de etiquetas
  3. Activadores y gestión de variables
  4. Implementación y eventos
  5. Tracking
  1. Visualización de datos
  2. Tipologías de gráficos
  3. Fuentes de datos
  4. Integración con Analytics
  5. Creación de informes
  1. Introducción a Python
  2. ¿Qué necesitas?
  3. Librerías para el análisis de datos en Python
  4. MongoDB, Hadoop y Python: Dream Team del Big Data
  1. Introducción a R
  2. ¿Qué necesitas?
  3. Tipos de datos
  4. Estadística Descriptiva y Predictiva con R
  5. Integración de R en Hadoop

metodología

claustro

Claustro de Profesores Especializado

Realizará un seguimiento personalizado del aprendizaje del alumno.

campus virtual

Campus virtual

Acceso ilimitado desde cualquier dispositivo 24 horas al día los 7 días de la semana al Entorno Personal de Aprendizaje.

materiales didácticos

Materiales didácticos

Apoyo al alumno durante su formación.

material adicional

Material Adicional

Proporcionado por los profesores para profundizar en cuestiones indicadas por el alumno.

Centro de atención al estudiante (CAE)

Centro de atención al estudiante (CAE)

Asesoramiento al alumno antes, durante, y después de su formación con un teléfono directo con el claustro docente 958 050 242.

inesem emplea

INESEM emplea

Programa destinado a mejorar la empleabilidad de nuestros alumnos mediante orientación profesional de carrera y gestión de empleo y prácticas profesionales.

comunidad

Comunidad

Formada por todos los alumnos de INESEM Business School para debatir y compartir conocimiento.

revista digital

Revista Digital INESEM

Punto de encuentro de profesionales y alumnos con el que podrás comenzar tu aprendizaje colaborativo.

masterclass

Master Class INESEM

Aprende con los mejores profesionales enseñando en abierto. Únete, aprende y disfruta.

Clases online

Clases online

Podrás continuar tu formación y seguir desarrollando tu perfil profesional con horarios flexibles y desde la comodidad de tu casa.

Con nuestra metodología de aprendizaje online, el alumno comienza su andadura en INESEM Business School a través de un campus virtual diseñado exclusivamente para desarrollar el itinerario formativo con el objetivo de mejorar su perfil profesional. El alumno debe avanzar de manera autónoma a lo largo de las diferentes unidades didácticas así como realizar las actividades y autoevaluaciones correspondientes.
La carga de horas de la acción formativa comprende las diferentes actividades que el alumno realiza a lo largo de su itinerario. Las horas de teleformación realizadas en el Campus Virtual se complementan con el trabajo autónomo del alumno, la comunicación con el docente, las actividades y lecturas complementarias y la labor de investigación y creación asociada a los proyectos.
Para obtener la titulación el alumno debe aprobar todas la autoevaluaciones y exámenes y visualizar al menos el 100% de los contenidos de la plataforma. El Proyecto Fin de Máster se realiza tras finalizar el contenido teórico-práctico en el Campus. Para aprobarlo es necesaria una nota mínima de 5. Por último, es necesario notificar la finalización del Máster desde la plataforma para comenzar la expedición del título.

becas

Becas y financiación

Hemos diseñado un Plan de Becas para facilitar aún más el acceso a nuestra formación junto con una flexibilidad económica. Alcanzar tus objetivos profesionales e impulsar tu carrera profesional será más fácil gracias a los planes de Inesem.

Si aún tienes dudas solicita ahora información para beneficiarte de nuestras becas y financiación.

20% Beca Antiguos Alumnos

Como premio a la fidelidad y confianza de los alumnos en el método INESEM, ofrecemos una beca del 20% a todos aquellos que hayan cursado alguna de nuestras acciones formativas en el pasado.

20% Beca Desempleo

Para los que atraviesan un periodo de inactividad laboral y decidan que es el momento idóneo para invertir en la mejora de sus posibilidades futuras.

15% Beca Emprende

Una beca en consonancia con nuestra apuesta por el fomento del emprendimiento y capacitación de los profesionales que se hayan aventurado en su propia iniciativa empresarial.

15% Beca Amigo

La beca amigo surge como agradecimiento a todos aquellos alumnos que nos recomiendan a amigos y familiares. Por tanto si vienes con un amigo o familiar podrás contar con una beca de 15%.

Financiación 100% sin intereses

Información sobre becas Becas aplicables sólamente tras la recepción de la documentación necesaria en el Departamento de Asesoramiento Académico. Más información en el 958 050 205 o vía email en formacion@inesem.es

Información sobre becas * Becas no acumulables entre sí.

Información sobre becas * Becas aplicables a acciones formativas publicadas en inesem.es

Información sobre becas * Becas no aplicables a formación programada.

titulación

Doble Titulación:

  • Titulación Propia Universitaria de Master de Formación Permanente en Business Intelligence y Big Data expedida por la Universidad Antonio de Nebrija con 60 créditos ECTS.
  •        
  • Titulación propia de Master de Formación Permanente en Business Intelligence y Big Data, expedida y avalada por el Instituto Europeo de Estudios Empresariales.(INESEM) “Enseñanza no oficial y no conducente a la obtención de un título con carácter oficial o certificado de profesionalidad.”
          Instituto Europeo de Estudios Empresariales

claustro

Claustro de profesores:
Rafael
Rafael Marín

Ingeniero técnico en Informática de Sistemas por la Universidad de Granada (UGR). 
Apasionado de la informática y de las nuevas tecnologías, cuenta con 10 años de experiencia y vocación en el ámbito TIC y la programación de software. Experto en Desarrollo web, Programación de aplicaciones, Análisis de datos, Big Data, Ciberseguridad y Diseño y experiencia de usuario (UX/UI).
 

Leer más
Bibiana
Bibiana Moreno Leyva

CEO de EducaLMS, proyecto de innovación educativa. Técnica superior en desarrollo de aplicaciones informáticas. Cuenta con más de seis años de experiencia profesional en la coordinación de análisis de aplicaciones multiplataforma y cinco años en desarrollo de aplicaciones web con distintas infraestructuras.

Leer más
Daniel
Daniel Rodriguez

Licenciado en Ingeniería Técnica en Informática de Sistemas. Cuenta con más de 10 años de experiencia en el desarrollo y soporte de la aplicación corporativa integral de gestión de matrículas y expedientes académicos, tutorización, facturación, logística, seguimiento del alumnado, así como gestión de grupos y convocatorias de formación. 
Experto en desarrollado en aplicaciones web, servicios web, APIs e informes de Crystal Reports, dominando base de datos y lenguajes como Transact-SQL. Realiza las funciones propias de un FullStack Developer, siendo especialista en ASP.NET, jQuery, CSS (Bootstrap, Sass) y web services. Además, cuenta con gran experiencia en desarrollo de proyectos en equipo, resolución de problemas y formación de personas de prácticas en la incorporación a un puesto de trabajo.
 

Leer más
Isaías
Isaías Aranda Cano

Grado Superior en Administración de Sistemas Informáticos. Especialista en ciberseguridad y en el diseño, implementación y gestión de servicios en la nube (Google, AWS, Azure,). Certificado en ITIL V3.
Más de 15 años de experiencia implementando y gestionando tecnologías en alta disponibilidad Open Source. 
 

Leer más
Juan Antonio
Juan Antonio Cortés Ibáñez
Graduado en Ingeniería Informática por la UGR con Máster Universitario Oficial en Ciencia de Datos e Ingeniería de Computadores por la UGR. Doctorando en tecnologías de la información por la UGR. Cuenta con amplia experiencia en científico de datos en el Repsol Technology Lab y en el sector de la docencia.Leer más

Opiniones de los alumnos

Elegí este master porque el temario era acorde con lo que estaba buscando, la modalidad virtual y el precio se ajustaban a mi idea inicial. Estoy seguro de que va a aportar mucho a mi CV. He adquirido conocimientos clave en análisis de datos e información, procesamiento de datos, procesos ETL, elaboración y despliegue de un proyecto Big Data, entre otros. Me ha fascinado el poder de las herramientas y la aplicación de sus resultados a la empresa.

Leandro J. B.

Me quiero dedicar profesionalmente a algo relacionado con Business Intelligence y Big Data así que, quería formarme más. Me encantó el temario de este curso. He aprendido como se pueden usar los datos para obtener información y tomar decisiones empresariales. Lo recomiendo.

Paola E. R.

He podido aprender la existencia y el uso general de varias de las herramientas para análisis de información, incluyendo el tema de las bases de datos que me parecía magnifico. Me ha gustado mucho el contenido de este máster porque se encuentra actualizado y acorde con los elementos que se requieren del mercado en este aspecto. Definitivamente es un buen complemento para los que tenemos experiencia en marketing y además conocimientos de TI avanzados. Me gustaría agradecerles por todo el apoyo durante este tiempo en la consecución de este máster.

John David P. M.
Dónde realizan las prácticas nuestros alumnos:
TAMBIÉN PODRÍA INTERESARTE...
Otras Acciones Formativas relacionadas
Curso Superior en Analítica Web y Big Data
Online | 220 H. | 460 368 EUR
Curso Superior en DevOps y Cloud Computing Aplicado a Big Data
Online | 220 H. | 460 368 EUR
Curso Superior en DataWarehouse y Business Intelligence
Online | 200 H. | 460 368 EUR
Curso Superior en Estadística Aplicada. Análisis de Datos y SPSS
Online | 200 H. | 460 368 EUR

¿Qué entendemos por negocio inteligente?

A resumidos rasgos, podríamos decir que, un negocio inteligente es el que aprovecha todos los datos que genera en cada uno de sus procesos para después transformarlos en información valiosa para su crecimiento. El Business Intelligence está estrechamente ligado al Big Data y ambos son perfiles que encabezan la actual demanda de profesionales en el sector empresa, sobre todas en aquellas cuyo valor diferencial es la innovación. El Master en Business Intelligence y Big Data de INESEM te ofrece los conocimientos necesarios para aprender a conseguir información importante para tu empresa y aplicarla correctamente.

¿Cuáles son los pilares del Business Intelligence?

La inteligencia de negocio se puede aplicar a cualquier proceso y departamento, es más, se vuelve mucho más efectiva cuando esa información llega al equipo de trabajo. Este Master en Business Intelligence dotará al alumno de los conocimientos clave para emprender la transformación de un negocio ordinario a uno dinámico y en constante evolución, es decir: inteligente. ¿Te atreves a ser tú el profesional que lidere la explosión del potencial de todo un equipo?

5 RAZONES

PARA ELEGIR INESEM

Hay muchas más motivos ¿Quieres conocerlos?

Por qué matricularme en INESEM
logo
ARTÍCULOS RELACIONADOS
Cargando artículos
INESEM EMPLEA

Completa tu formación con nuestro Servicio de Orientación Profesional y nuestro Programa de Entrenamiento por Competencias.

inesem emplea inesem emplea inesem emplea
Universidades colaboradoras
La universidad Antonio de Nebrija es Universidad colaboradora con INESEM Business School La universidad a Distancia de Madrid es Universidad colaboradora con INESEM Business School