INESEM.ES logo

Curso Superior Universitario en Data Science (Titulación Universitaria + 8 Créditos ECTS)

El análisis y explotación de los datos es en la actualidad un reto necesario en la mayoría de empresas. Cada vez hay más competencia entre empresas y la necesidad de analizar datos masivos mediante técnicas eficaces, fiables y rápidas, hacen imprescindible el uso de la ciencia de datos. Con este Curso Superior Data Science podrás ampliar tus conocimientos en un sector cada más demandado en el mercado laboral actual.
Logo NFC - Nebrija Formacion Continua INESEM
  • Online
  • 200 h.
  • 8 ECTS
  • Abierta
  • 360€
 
¿Quieres más info?
Información básica sobre Protección de Datos. Pinche aquí
Responsable INSTITUTO EUROPEO DE ESTUDIOS EMPRESARIALES, S.A. Finalidad Información académica y comercial de nuestros servicios de enseñanza Legitimación Consentimiento del interesado Destinatarios Encargados del tratamiento para cumplir con las finalidades Derechos Acceder, rectificar y suprimir los datos, así como otros derechos, como se explica en la información adicional

Información adicional Pulsa aquí

* El campo es obligatorio
Contacta por whatsapp
+34 958 050 205
L-J 9-18:30 h V 9-15 h
 
 
Para qué te prepara
Con el Curso Superior Data Science aprenderás a explotar los datos masivos haciendo uso de las técnicas estadísticas y lenguajes de programación más usados en un entorno de Big Data. Serás capaz de visualizar resultados y aplicar algoritmos propios de la ciencia de datos mediante Python y R permitiéndote tomar decisiones estratégicas y optimizar los cálculos. Además crearás cuadros de mando (Dashboard)
 
Objetivos
  • Aprender a explotar los datos y visualizar los resultados mediante técnicas de Data Science y programación estadística con Python y R
  • Conocer los principales algoritmos de análisis estadístico utilizados en entorno de Big Data
  • Adquirir los conocimientos necesarios para el manejo de Bases de datos tanto relacionales como NoSQL
  • Aprender a aplicar las técnicas de Data Mining mediante Weka.
  • Descubrir la creación de cuadros de mandos (Dashboard)
 
A quién va dirigido
Este Curso Superior Data Science está dirigido a cualquier persona interesada en el mundo de la ciencia de datos y su aplicación a toda la tecnología que engloba el Big Data, especializándose en el análisis y explotación de los datos, así como a profesionales que deseen seguir formándose en un sector cada vez más demandado.
 
Salidas Profesionales
- Analista de datos- Data Sciencist- Experto en Big Data- Data Miner- Consultor de proyectos Big Data- Chief Data Officer (CDO)
MÓDULO 1. DATA SCIENCE (CIENCIA DE DATOS)
UNIDAD DIDÁCTICA 1.INTRODUCCIÓN A LA CIENCIA DE DATOS
  1. ¿Qué es la ciencia de datos?
  2. Herramientas necesarias para el científico de datos
  3. Data Science & Cloud Compunting
  4. Aspectos legales en Protección de Datos
UNIDAD DIDÁCTICA 2.BASES DE DATOS RELACIONALES
  1. Introducción
  2. El modelo relacional
  3. Lenguaje de consulta SQL
  4. MySQL Una base de datos relacional
UNIDAD DIDÁCTICA 3. BASES DE DATOS NOSQL Y EL ALMACENAMIENTO ESCALABLE
  1. ¿Qué es una base de datos NoSQL?
  2. Bases de datos Relaciones Vs Bases de datos NoSQL
  3. Tipo de Bases de datos NoSQL Teorema de CAP
  4. Sistemas de Bases de datos NoSQL
UNIDAD DIDÁCTICA 4. INTRODUCCIÓN A UN SISTEMA DE BASES DE DATOS NOSQL: MONGODB
  1. ¿Qué es MongoDB?
  2. Funcionamiento y uso de MongoDB
  3. Primeros pasos con MongoDB: Instalación y shell de comandos
  4. Creando nuestra primera Base de Datos NoSQL: Modelo e Inserción de Datos
  5. Actualización de datos en MongoDB: Sentencias set y update
  6. Trabajando con índices en MongoDB para optimización de datos
  7. Consulta de datos en MongoDB
UNIDAD DIDÁCTICA 5. WEKA Y DATA MINING
  1. ¿Qué es Weka?
  2. Técnicas de Data Mining en Weka
  3. Interfaces de Weka
  4. Selección de atributos
UNIDAD DIDÁCTICA 6. PYTHON Y EL ANÁLISIS DE DATOS
  1. Introducción a Python
  2. ¿Qué necesitas?
  3. Librerías para el análisis de datos en Python
  4. MongoDB, Hadoop y Python Dream Team del Big Data
UNIDAD DIDÁCTICA 7. R COMO HERRAMIENTA PARA BIG DATA
  1. Introducción a R
  2. ¿Qué necesitas?
  3. Tipos de datos
  4. Estadística Descriptiva y Predictiva con R
  5. Integración de R en Hadoop
UNIDAD DIDÁCTICA 8. PRE-PROCESAMIENTO & PROCESAMIENTO DE DATOS
  1. Obtención y limpieza de los datos (ETL)
  2. Inferencia estadística
  3. Modelos de regresión
  4. Pruebas de hipótesis
UNIDAD DIDÁCTICA 9. ANÁLISIS DE LOS DATOS
  1. Inteligencia Analítica de negocios
  2. La teoría de grafos y el análisis de redes sociales
  3. Presentación de resultados
MÓDULO 2. CUADRO DE MANDO Y DASHBOARD
UNIDAD DIDÁCTICA 1. DEFINICIÓN DE KPIS
  1. Definición de KPIs
  2. KPI, CSF y metas
  3. Principales KPIS
  4. Ejemplos de KPIS
  5. Supuesto práctico: Cálculo de KPI con Excel
UNIDAD DIDÁCTICA 2. CONCEPTO Y CREACIÓN DE CUADROS DE MANDO
  1. Introducción a los cuadros de mando y dashboard
  2. Estrategias para la creación de un cuadro de mando
  3. Dashboard en Excel o Google Analytics
UNIDAD DIDÁCTICA 3.HERRAMIENTAS PARA LA CREACIÓN DE CUADROS DE MANDO
  1. Aplicaciones gratuitas
  2. Aplicaciones propietarias
Con nuestra metodología de aprendizaje online, el alumno comienza su andadura en INESEM Business School a través de un campus virtual diseñado exclusivamente para desarrollar el itinerario formativo con el objetivo de mejorar su perfil profesional. El alumno debe avanzar de manera autónoma a lo largo de las diferentes unidades didácticas así como realizar las actividades y autoevaluaciones correspondientes.La carga de horas de la acción formativa comprende las diferentes actividades que el alumno realiza a lo largo de su itinerario. Las horas de teleformación realizadas en el Campus Virtual se complementan con el trabajo autónomo del alumno, la comunicación con el docente, las actividades y lecturas complementarias y la labor de investigación y creación asociada a los proyectos. Para obtener la titulación el alumno debe aprobar todas la autoevaluaciones y exámenes y visualizar al menos el 75% de los contenidos de la plataforma. Por último, es necesario notificar la finalización de la acción formativa desde la plataforma para comenzar la expedición del título.

Claustro de Profesores Especializado que realizará un seguimiento personalizado al alumno.

Campus virtual con acceso ilimitado y acceso desde cualquier dispositivo.

Materiales didácticos que servirán de apoyo al alumno durante su formación.

Material adicional proporcionado por los profesores para profundizar en cuestiones indicadas por el alumno.

Centro de atención al estudiante (CAE). Asesoramiento al alumno antes, durante y después de su formación con un teléfono directo con el claustro docente 958 050 242.

INESEM Emplea. Programa destinado a mejorar la empleabilidad de nuestros alumnos mediante orientación profesional de carrera y gestión de empleo y prácticas profesionales.

Comunidad formada por todos los alumnos de INESEM Business School para debatir y compartir conocimiento.

Revista Digital INESEM. Punto de encuentro de profesionales y alumnos con el que podrás comenzar tu aprendizaje colaborativo.

Master class INESEM. Aprende con los mejores profesionales enseñando en abierto. Únete, aprende y disfruta.

Titulación Universitaria con 8 créditos ECTS Expedida por la Universidad Antonio de Nebrija como Formación Continua (NFC) (Baremable en bolsas de trabajo y concursos oposición de la Administración Pública).
Universidad Antonio de Nebrija

Becas y financiación del Curso Superior Universitario en Data Science (Titulación Universitaria + 8 Créditos ECTS)

beca desempleo

20%

Para los que atraviesen un periodo de inactividad laboral y decidan que es el momento idóneo para invertir en la mejora de sus posibilidades futuras.

beca antiguos alumnos

10%

Como premio a la fidelidad y confianza de los alumnos en el método INESEM, ofrecemos una beca a todos aquellos que hayan cursado alguna de nuestras acciones formativas.

beca emprende

15%

Una beca en consonancia con nuestra apuesta por el fomento del emprendimiento y capacitación de los profesionales que se hayan aventurado en su propia iniciativa empresarial.

Financiación 100% sin intereses

* Becas aplicables sólamente tras la recepción de la documentación necesaria en el Departamento de Asesoramiento Académico. Más información en el 958 050 205 o vía email en formacion@inesem.es
* Becas no acumulables entre sí.
* Becas aplicables a acciones formativas publicadas en inesem.es
Matriculación en: Curso Superior Universitario en Data Science (Titulación Universitaria + 8 Créditos ECTS)
Comprobando...
Información básica sobre Protección de Datos. Pinche aquí
Responsable INSTITUTO EUROPEO DE ESTUDIOS EMPRESARIALES, S.A. Finalidad Información académica y comercial de nuestros servicios de enseñanza Legitimación Consentimiento del interesado Destinatarios Encargados del tratamiento para cumplir con las finalidades Derechos Acceder, rectificar y suprimir los datos, así como otros derechos, como se explica en la información adicional

Información adicional Pulsa aquí

Pedido con obligación de pago
360
* El campo es obligatorio

INESEM EMPLEA


Completa tu formación con nuestro Servicio de Orientación Profesional y nuestro Programa de Entrenamiento por Competencias
  • ORIENTACIÓN

  • PRÁCTICAS

  • EMPLEO

Artículos relacionados con el Curso Superior Universitario en Data Science (Titulación Universitaria + 8 Créditos ECTS)

¡Mantente actualizado! Nuestros profesores analizan la actualidad y las últimas tendencias de todas nuestras áreas de formación
Revista Digital

¿Empresa o empleado? Bonificamos tu formación

  •  
  •  
  •  
  •  
  • Gestionamos el crédito formativo de tu empresa
  • Asesoramiento para aplicar correctamente la bonificación
  • Trámites administrativos para uso de formación bonificada
  • Diseño de planes formativos adaptados a tus necesidades