Las matrículas realizadas durante la vigencia del RD Ley 20/2020 no recibirán los materiales didácticos físicos hasta la finalización de la vigencia de este RD-Ley.
Todas nuestras AAFF modalidad online recibirán claves de acceso a la Plataforma de forma inmediata una vez confirmada la matrícula.

Comunicado COVID-19

Seguimos trabajando y atendiendo a alumnos actuales y futuros

Ampliar información
Master en Data Management
practicas
Prácticas Garantizadas
convocatoria
Convocatoria Abierta
modalidad
ONLINE
duracion
1500 H
precio
1595 EUR
practicas
Prácticas
Garantizadas
convocatoria
Convocatoria
Abierta
Las acciones formativas de INESEM tienen modalidad online
Modalidad
ONLINE
Duración de las acciones formativas de INESEM
Duración
1500 H
Precio de las acciones formativas de INESEM
Precio
1595EUR

Presentación

Mediante la realización de este Master en Data Management  aprenderás a recopilar y gestionar el gran volumen de información que día a día es compartida. Mediante distintas herramientas y análisis se pueden extraer conclusiones clave para el avance, actualización e innovación de cualquier empresa. Además, gracias al uso de la inteligencia artificial, el machine learning y el deep learning esta actualización se adaptará a las últimas tendencias de mercado. 
Titulacion de INESEM
plan de estudios

Para qué te prepara
Mediante la realización de este Master en Data Management aprenderás a recopilar y gestionar el gran volumen de información que día a día es compartida. Mediante distintas herramientas y análisis se pueden extraer conclusiones clave para el avance, actualización e innovación de cualquier empresa. Además, gracias al uso de la inteligencia artificial, el machine learning y el deep learning esta actualización se adaptará a las últimas tendencias de mercado.

Objetivos
  • Descubrir la importancia del Big Data y sus principales aplicaciones.
  • Aprender a utilizar las principales herramientas de Big Data.
  • Comprender la importancia y actualidad de la inteligencia artificial y su aplicación para construir sistemas inteligentes gracias al machine learning y el deep learning.
  • Analizar y procesar datos mediante Python y R, lenguajes clave en la programación estadística.
  • Aprender a crear un chatbot gracias al uso del procesamiento de lenguaje natural.
  • Entender la importancia y saber aplicar la ciberseguridad en todos estos ámbitos.

A quién va dirigido
El Máster en Data Management, está principalmente orientado a profesionales informáticos que deseen dar un salto de calidad en sus carreras gracias al estudio y aplicación de grandes volúmenes de información en áreas como la inteligencia artificial, el Machine Learning y el Deep Learning que cada vez tiene mayor importancia en todas las tecnologías actuales y futuras. Además, también está pensado para aquellos estudiantes que busquen una formación especializada que les ayude a adentrase en el mercado laboral a través de sus prácticas garantizadas.

Salidas Profesionales
Gracias a la realización de este máster podrás a optar a puestos de gran futuro y tan importantes como Big Data Scientist, Data Manager, AI Developer, Consultor Data Science, Data Analyst, Data Engineer o líder de proyectos big data.

temario

  1. ¿Qué es Big Data?
  2. La era de las grandes cantidades de información. Historia del big data
  3. La importancia de almacenar y extraer información
  4. Big Data enfocado a los negocios
  5. Open Data
  6. Información pública
  7. IoT (Internet of Things-Internet de las cosas)
  1. Definición y relevancia de la selección de las fuentes de datos
  2. Naturaleza de las fuentes de datos Big Data
  1. Definición, Beneficios y Características
  2. Ejemplo de uso de Open Data
  1. Diagnóstico inicial
  2. Diseño del proyecto
  3. Proceso de implementación
  4. Monitorización y control del proyecto
  5. Responsable y recursos disponibles
  6. Calendarización
  7. Alcance y valoración económica del proyecto
  1. Definiendo el concepto de Business Intelligence y sociedad de la información
  2. Arquitectura de una solución de Business Intelligence
  3. Business Intelligence en los departamentos de la empresa
  4. Conceptos de Plan Director, Plan Estratégico y Plan de Operativa Anual
  5. Sistemas operacionales y Procesos ETL en un sistema de BI
  6. Ventajas y Factores de Riesgos del Business Intelligence
  1. Cuadros de Mando Integrales (CMI)
  2. Sistemas de Soporte a la Decisión (DSS)
  3. Sistemas de Información Ejecutiva (EIS)
  1. Apoyo del Big Data en el proceso de toma de decisiones
  2. Toma de decisiones operativas
  3. Marketing estratégico y Big Data
  4. Nuevas tendencias en management
  1. Concepto de web semántica
  2. Linked Data Vs Big Data
  3. Lenguaje de consulta SPARQL
  1. Contexto Internet de las Cosas (IoT)
  2. ¿Qué es IoT?
  3. Elementos que componen el ecosistema IoT
  4. Arquitectura IoT
  5. Dispositivos y elementos empleados
  6. Ejemplos de uso
  7. Retos y líneas de trabajo futuras
  1. Hadoop
  2. Pig
  3. Hive
  4. Sqoop
  5. Flume
  6. Spark Core
  7. Spark 2.0
  1. Fundamentos de Streaming Processing
  2. Spark Streaming
  3. Kafka
  4. Pulsar y Apache Apex
  5. Implementación de un sistema real-time
  1. Hbase
  2. Cassandra
  3. MongoDB
  4. NeoJ
  5. Redis
  6. Berkeley DB
  1. Arquitectura Lambda
  2. Arquitectura Kappa
  3. Apache Flink e implementaciones prácticas
  4. Druid
  5. ElasticSearch
  6. Logstash
  7. Kibana
  1. Amazon Web Services
  2. Google Cloud Platform
  1. Administración e Instalación de clusters: Cloudera y Hortonworks
  2. Optimización y monitorización de servicios
  3. Seguridad: Apache Knox, Ranger y Sentry
  1. Herramientas de visualización: Tableau y CartoDB
  2. Librerías de Visualización: D, Leaflet, Cytoscape
  1. Introducción a la minería de datos y el aprendizaje automático
  2. Proceso KDD
  3. Modelos y Técnicas de Data Mining
  4. Áreas de aplicación
  5. Minería de textos y Web Mining
  6. Data mining y marketing
  1. Aproximación al concepto de DataMart
  2. Bases de datos OLTP
  3. Bases de Datos OLAP
  4. MOLAP, ROLAP & HOLAP
  5. Herramientas para el desarrollo de cubos OLAP
  1. Visión General. ¿Por qué DataWarehouse?
  2. Estructura y Construcción
  3. Fases de implantación
  4. Características
  5. Data Warehouse en la nube
  1. Tipos de herramientas para BI
  2. Productos comerciales para BI
  3. Productos Open Source para BI
  4. Beneficios de las herramientas de BI
  1. Business Intelligence en Excel
  2. Herramienta Powerbi
  1. ¿Qué es una base de datos NoSQL?
  2. Bases de datos Relaciones Vs Bases de datos NoSQL
  3. Tipo de Bases de datos NoSQL. Teorema de CAP
  4. Sistemas de Bases de datos NoSQL
  1. ¿Qué es MongoDB?
  2. Funcionamiento y uso de MongoDB
  3. Primeros pasos con MongoDB. Instalación y shell de comandos
  4. Creando nuestra primera Base de Datos NoSQL.Modelo e Inserción de Datos
  5. Actualización de datos en MongoDB. Sentencias set y update
  6. Trabajando con índices en MongoDB para optimización de datos
  7. Consulta de datos en MongoDB
  1. ¿Qué es Hadoop?
  2. El sistema de archivos HDFS
  3. Algunos comandos de referencia
  4. Procesamiento MapReduce con Hadoop
  5. El concepto de los clusters en Hadoop
  1. ¿Qué es Weka?
  2. Técnicas de Data Mining en Weka
  3. Interfaces de Weka
  4. Selección de atributos
  1. Una aproximación a Pentaho
  2. Soluciones que ofrece Pentaho
  3. MongoDB & Pentaho
  4. Hadoop & Pentaho
  5. Weka & Pentaho
  1. Introducción a Python
  2. ¿Qué necesitas?
  3. Librerías para el análisis de datos en Python
  4. MongoDB, Hadoop y Python. Dream Team del Big Data
  1. Introducción a R
  2. ¿Qué necesitas?
  3. Tipos de datos
  4. Estadística Descriptiva y Predictiva con R
  5. Integración de R en Hadoop
  1. ¿Qué es la ciencia de datos?
  2. Herramientas necesarias para el científico de datos
  3. Data Science & Cloud Compunting
  4. Aspectos legales en Protección de Datos
  1. Introducción
  2. El modelo relacional
  3. Lenguaje de consulta SQL
  4. MySQL. Una base de datos relacional
  1. Obtención y limpieza de los datos (ETL)
  2. Inferencia estadística
  3. Modelos de regresión
  4. Pruebas de hipótesis
  1. Inteligencia Analítica de negocios
  2. La teoría de grafos y el análisis de redes sociales
  3. Presentación de resultados
  1. Introducción a la inteligencia artificial
  2. Historia
  3. La importancia de la IA
  1. Algoritmos aplicados a la inteligencia artificial
  1. Relación entre inteligencia artificial y big data
  2. IA y Big Data combinados
  3. El papel del Big Data en IA
  4. Tecnologías de IA que se están utilizando con Big Data
  1. Sistemas expertos
  2. Estructura de un sistema experto
  3. Inferencia: Tipos
  4. Fases de construcción de un sistema
  5. Rendimiento y mejoras
  6. Dominios de aplicación
  7. Creación de un sistema experto en C#
  8. Añadir incertidumbre y probabilidades
  1. Futuro de la inteligencia artificial
  2. Impacto de la IA en la industria
  3. El impacto económico y social global de la IA y su futuro
  1. Introducción
  2. Clasificación de algoritmos de aprendizaje automático
  3. Ejemplos de aprendizaje automático
  4. Diferencias entre el aprendizaje automático y el aprendizaje profundo
  5. Tipos de algoritmos de aprendizaje automático
  6. El futuro del aprendizaje automático
  1. Introducción
  2. Filtrado colaborativo
  3. Clusterización
  4. Sistemas de recomendación híbridos
  1. Clasificadores
  2. Algoritmos
  1. Introducción
  2. El proceso de paso de DSS a IDSS
  3. Casos de aplicación
  1. Aprendizaje profundo
  2. Entorno de Deep Learning con Python
  3. Aprendizaje automático y profundo
  1. Redes neuronales
  2. Redes profundas y redes poco profundas
  1. Perceptrón de una capa y multicapa
  2. Ejemplo de perceptrón
  1. Tipos de redes profundas
  2. Trabajar con TensorFlow y Python
  1. Entrada y salida de datos
  2. Entrenar una red neuronal
  3. Gráficos computacionales
  4. Implementación de una red profunda
  5. El algoritmo de propagación directa
  6. Redes neuronales profundas multicapa
  1. ¿Qué es PLN?
  2. ¿Qué incluye el PLN?
  3. Ejemplos de uso de PLN
  4. Futuro del PLN
  1. Introducción a Python
  2. ¿Qué necesitas?
  3. Librerías para el análisis de datos en Python
  4. PLN en Python con la librería NLTK
  5. Otras herramientas para PLN
  1. Principios del análisis sintáctico
  2. Gramática libre de contexto
  3. Analizadores sintácticos (Parsers)
  1. Aspectos introductorios del análisis semántico
  2. Lenguaje semántico para PLN
  3. Análisis pragmático
  1. Aspectos introductorios
  2. Pasos en la extracción de información
  3. Ejemplo PLN
  4. Ejemplo PLN con entrada de texto en inglés
  1. Introducción a la Inteligencia artificial
  2. El Test de Turing
  3. Agentes Inteligentes
  4. Aplicaciones de la inteligencia artificial
  1. Aspectos introductorios
  2. ¿Qué es un chatbot?
  3. ¿Cómo funciona un chatbot?
  4. VoiceBots
  5. Desafios para los Chatbots
  1. Chatbots y el papel de la Inteligencia Artificial (IA)
  2. Usos y beneficios de los chatbots
  3. Diferencia entre bots, chatbots e IA
  1. Áreas de aplicación de Chatbots
  2. Desarrollo de un chatbot con ChatterBot y Python
  3. Desarrollo de un chatbot para Facebook Messenger con Chatfuel
  1. Concepto de seguridad TIC
  2. Tipos de seguridad TIC
  3. Aplicaciones seguras en Cloud
  4. Plataformas de administración de la movilidad empresarial (EMM)
  5. Redes WiFi seguras
  6. Caso de uso: Seguridad TIC en un sistema de gestión documental
  1. Buenas prácticas de seguridad móvil
  2. Protección de ataques en entornos de red móv
  1. Inteligencia Artificial
  2. Tipos de inteligencia artificial
  3. Impacto de la Inteligencia Artificial en la ciberseguridad
  1. Contexto Internet de las Cosas (IoT)
  2. ¿Qué es IoT?
  3. Elementos que componen el ecosistema IoT
  4. Arquitectura IoT
  5. Dispositivos y elementos empleados
  6. Ejemplos de uso
  7. Retos y líneas de trabajo futuras
  8. Vulnerabilidades de IoT
  9. Necesidades de seguridad específicas de IoT
  1. Industria 4.0
  2. Necesidades en ciberseguridad en la Industria 4.0

metodología

claustro

Claustro de Profesores Especializado

Realizará un seguimiento personalizado del aprendizaje del alumno.

campus virtual

Campus virtual

Acceso ilimitado desde cualquier dispositivo 24 horas al día los 7 días de la semana al Entorno Personal de Aprendizaje.

materiales didácticos

Materiales didácticos

Apoyo al alumno durante su formación.

material adicional

Material Adicional

Proporcionado por los profesores para profundizar en cuestiones indicadas por el alumno.

Centro de atención al estudiante (CAE)

Centro de atención al estudiante (CAE)

Asesoramiento al alumno antes, durante, y después de su formación con un teléfono directo con el claustro docente 958 050 242.

inesem emplea

INESEM emplea

Programa destinado a mejorar la empleabilidad de nuestros alumnos mediante orientación profesional de carrera y gestión de empleo y prácticas profesionales.

comunidad

Comunidad

Formada por todos los alumnos de INESEM Business School para debatir y compartir conocimiento.

revista digital

Revista Digital INESEM

Punto de encuentro de profesionales y alumnos con el que podrás comenzar tu aprendizaje colaborativo.

masterclass

Master Class INESEM

Aprende con los mejores profesionales enseñando en abierto. Únete, aprende y disfruta.

Clases online

Clases online

Podrás continuar tu formación y seguir desarrollando tu perfil profesional con horarios flexibles y desde la comodidad de tu casa.

Con nuestra metodología de aprendizaje online, el alumno comienza su andadura en INESEM Business School a través de un campus virtual diseñado exclusivamente para desarrollar el itinerario formativo con el objetivo de mejorar su perfil profesional. El alumno debe avanzar de manera autónoma a lo largo de las diferentes unidades didácticas así como realizar las actividades y autoevaluaciones correspondientes.La carga de horas de la acción formativa comprende las diferentes actividades que el alumno realiza a lo largo de su itinerario. Las horas de teleformación realizadas en el Campus Virtual se complementan con el trabajo autónomo del alumno, la comunicación con el docente, las actividades y lecturas complementarias y la labor de investigación y creación asociada a los proyectos. Para obtener la titulación el alumno debe aprobar todas la autoevaluaciones y exámenes y visualizar al menos el 75% de los contenidos de la plataforma. El Proyecto Fin de Máster se realiza tras finalizar el contenido teórico-práctico en el Campus. Por último, es necesario notificar la finalización del Máster desde la plataforma para comenzar la expedición del título.

becas

Becas y financiación del Master en Data Management

Hemos diseñado un Plan de Becas para facilitar aún más el acceso a nuestra formación junto con una flexibilidad económica. Alcanzar tus objetivos profesionales e impulsar tu carrera profesional será más fácil gracias a los planes de Inesem.

Si aún tienes dudas solicita ahora información para beneficiarte de nuestras becas y financiación.

20% Beca Antiguos Alumnos

Como premio a la fidelidad y confianza de los alumnos en el método INESEM, ofrecemos una beca del 20% a todos aquellos que hayan cursado alguna de nuestras acciones formativas en el pasado.

20% Beca Desempleo

Para los que atraviesan un periodo de inactividad laboral y decidan que es el momento idóneo para invertir en la mejora de sus posibilidades futuras.

15% Beca Emprende

Una beca en consonancia con nuestra apuesta por el fomento del emprendimiento y capacitación de los profesionales que se hayan aventurado en su propia iniciativa empresarial.

15% Beca Amigo

La beca amigo surge como agradecimiento a todos aquellos alumnos que nos recomiendan a amigos y familiares. Por tanto si vienes con un amigo o familiar podrás contar con una beca de 15%.

Financiación 100% sin intereses

* Becas aplicables sólamente tras la recepción de la documentación necesaria en el Departamento de Asesoramiento Académico. Más información en el 958 050 205 o vía email en formacion@inesem.es

* Becas no acumulables entre sí.

* Becas aplicables a acciones formativas publicadas en inesem.es

titulación

Titulación Expedida y Avalada por el Instituto Europeo de Estudios Empresariales
Titulación:
Titulacion de INESEM

INESEM Business School se ocupa también de la gestión de la Apostilla de la Haya, previa demanda del estudiante. Este sello garantiza la autenticidad de la firma del título en los 113 países suscritos al Convenio de la Haya sin necesidad de otra autenticación. El coste de esta gestión es de 30 euros. Si deseas más información contacta con nosotros en el 958 050 205 y resolveremos todas tus dudas.

claustro

Claustro de profesores:
Rafael
Rafael Marín

Ingeniero técnico en Informática de Sistemas por la UGR. Cuenta con más de 5 años de experiencia y vocación en el ámbito de las tecnologías TIC y la programación de aplicaciones informáticas. Especializado en data science, big data y business intelligence y apasionado por la Inteligencia Artificial. 

Leer más
Víctor
Víctor Acosta Gómez

Ingeniero superior en desarrollo de aplicaciones informáticas por la Universidad de Granada. Cuenta con más de 25 años de experiencia en ciberseguridad y desarrollando proyectos de aplicaciones web e industriales de trazabilidad. Tiene amplia experiencia en formación ocupacional y profesional tanto presencial como elearning, colaborando como docentes en varias universidades.

Leer más
Bibiana
Bibiana Moreno Leyva

CEO de EducaLMS, proyecto de innovación educativa. Técnica superior en desarrollo de aplicaciones informáticas. Cuenta con más de seis años de experiencia profesional en la coordinación de análisis de aplicaciones multiplataforma y dos años en desarrollo de aplicaciones web con distintas infraestructuras.

Leer más
Daniel
Daniel Rodriguez

Ingeniero Técnico en Informática de Sistemas, analista programador de aplicaciones web usando la plataforma de desarrollo ASP‎.‎NET con C‎# así también como desarrollo de aplicaciones usando PHP. Experto en bases de datos SQL Server y MySql y conexión con aplicaciónes web mediante ORM como NHibernate y Entity Framework además del uso de  ADO.net.  Actualmente jefe de proyecto en Innoforma Elearning Technologies.

Leer más
Isaías
Isaías Aranda Cano

Especialista en ciberseguridad y en gestión de servicios de tecnologías de la información certificado en ITIL V3. Mas de 10 años de experiencia en tecnologías Open Source. Administrador de sistemas y responsable de TI, apasionado de las tecnologías abiertas y el software libre en infraestructuras de alta demanda. Grado superior en administración de sistemas informáticos.

Leer más
Daniel
Daniel Cabrera

Experto en Implantación, Gestión y Auditoría de Sistemas de Seguridad de Información ISO 27001-27002. Cuenta con más de 10 años de experiencia en Administrador de Sistemas y responsable de TI, apasionado de las tecnologías abiertas y el software libre, especialista en infraestructuras de alta demanda y disponibilidad. Licenciado en Ciencias Físicas por la Universidad Autónoma de Madrid.

Leer más
Paula
Paula Rochina

Ingeniera Técnica en informática de sistemas por la UGR. Cuenta con amplia experiencia en la divulgación científica, participando, entre otros proyectos, en el acercamiento de la robótica educativa a la educación primaria y secundaria y el sector de la educación relacionado con las TICs. Además cuenta con un Master universitario en formación del profesorado.

Leer más

5 RAZONES

PARA ELEGIR INESEM

Hay muchas más motivos ¿Quieres conocerlos?

Por qué matricularme en INESEM
logo
ARTÍCULOS RELACIONADOS
Cargando artículos
INESEM EMPLEA

Completa tu formación con nuestro Servicio de Orientación Profesional y nuestro Programa de Entrenamiento por Competencias.

inesem emplea inesem emplea inesem emplea
Universidades colaboradoras
La universidad Antonio de Nebrija es Universidad colaboradora con INESEM Business School La universidad a Distancia de Madrid es Universidad colaboradora con INESEM Business School